These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 20463741)

  • 1. A conserved spider silk domain acts as a molecular switch that controls fibre assembly.
    Hagn F; Eisoldt L; Hardy JG; Vendrely C; Coles M; Scheibel T; Kessler H
    Nature; 2010 May; 465(7295):239-42. PubMed ID: 20463741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of spider silk proteins is controlled by a pH-sensitive relay.
    Askarieh G; Hedhammar M; Nordling K; Saenz A; Casals C; Rising A; Johansson J; Knight SD
    Nature; 2010 May; 465(7295):236-8. PubMed ID: 20463740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structural view on spider silk proteins and their role in fiber assembly.
    Hagn F
    J Pept Sci; 2012 Jun; 18(6):357-65. PubMed ID: 22570231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimerization of the Conserved N-Terminal Domain of a Spider Silk Protein Controls the Self-Assembly of the Repetitive Core Domain.
    Bauer J; Scheibel T
    Biomacromolecules; 2017 Aug; 18(8):2521-2528. PubMed ID: 28649828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sequence features on assembly of spider silk block copolymers.
    Tokareva OS; Lin S; Jacobsen MM; Huang W; Rizzo D; Li D; Simon M; Staii C; Cebe P; Wong JY; Buehler MJ; Kaplan DL
    J Struct Biol; 2014 Jun; 186(3):412-9. PubMed ID: 24613991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation and dynamics of soluble repetitive domain elucidates the initial β-sheet formation of spider silk.
    Oktaviani NA; Matsugami A; Malay AD; Hayashi F; Kaplan DL; Numata K
    Nat Commun; 2018 May; 9(1):2121. PubMed ID: 29844575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for the structure of the C-terminal domain of dragline spider silk and the role of its conserved cysteine.
    Ittah S; Michaeli A; Goldblum A; Gat U
    Biomacromolecules; 2007 Sep; 8(9):2768-73. PubMed ID: 17696395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of polyalanine domains in beta-sheet formation in spider silk block copolymers.
    Rabotyagova OS; Cebe P; Kaplan DL
    Macromol Biosci; 2010 Jan; 10(1):49-59. PubMed ID: 19890885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Thermosensitive Hydrogels Assembled from the Conserved C-Terminal Domain of Spider Dragline Silk.
    Qian ZG; Zhou ML; Song WW; Xia XX
    Biomacromolecules; 2015 Nov; 16(11):3704-11. PubMed ID: 26457360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of recombinantly produced spider flagelliform silk domains.
    Heim M; Ackerschott CB; Scheibel T
    J Struct Biol; 2010 May; 170(2):420-5. PubMed ID: 20045468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and optical studies on selected web spinning spider silks.
    Karthikeyani R; Divya A; Mathavan T; Asath RM; Benial AM; Muthuchelian K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():111-6. PubMed ID: 27423109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR assignment and dynamics of the dimeric form of soluble C-terminal domain major ampullate spidroin 2 from Latrodectus hesperus.
    Oktaviani NA; Malay AD; Goto M; Nagashima T; Hayashi F; Numata K
    Biomol NMR Assign; 2023 Dec; 17(2):249-255. PubMed ID: 37668860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of minor ampullate spidroin domains and their distinct roles in fibroin solubility and fiber formation.
    Gao Z; Lin Z; Huang W; Lai CC; Fan JS; Yang D
    PLoS One; 2013; 8(2):e56142. PubMed ID: 23418525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus.
    La Mattina C; Reza R; Hu X; Falick AM; Vasanthavada K; McNary S; Yee R; Vierra CA
    Biochemistry; 2008 Apr; 47(16):4692-700. PubMed ID: 18376847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of eggcase silk protein and its implications for silk fiber formation.
    Lin Z; Huang W; Zhang J; Fan JS; Yang D
    Proc Natl Acad Sci U S A; 2009 Jun; 106(22):8906-11. PubMed ID: 19458259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk--implications for fiber formation.
    Hagn F; Thamm C; Scheibel T; Kessler H
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):310-3. PubMed ID: 21064058
    [No Abstract]   [Full Text] [Related]  

  • 17. N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins.
    Rising A; Hjälm G; Engström W; Johansson J
    Biomacromolecules; 2006 Nov; 7(11):3120-4. PubMed ID: 17096540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Mechanical Roles for the C-Terminal Nonrepetitive Domain Become Apparent in Recombinant Spider Aciniform Silk.
    Xu L; Lefèvre T; Orrell KE; Meng Q; Auger M; Liu XQ; Rainey JK
    Biomacromolecules; 2017 Nov; 18(11):3678-3686. PubMed ID: 28934550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review the role of terminal domains during storage and assembly of spider silk proteins.
    Eisoldt L; Thamm C; Scheibel T
    Biopolymers; 2012 Jun; 97(6):355-61. PubMed ID: 22057429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins.
    Bogush VG; Sokolova OS; Davydova LI; Klinov DV; Sidoruk KV; Esipova NG; Neretina TV; Orchanskyi IA; Makeev VY; Tumanyan VG; Shaitan KV; Debabov VG; Kirpichnikov MP
    J Neuroimmune Pharmacol; 2009 Mar; 4(1):17-27. PubMed ID: 18839314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.