BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 20463897)

  • 1. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats.
    Valladares R; Sankar D; Li N; Williams E; Lai KK; Abdelgeliel AS; Gonzalez CF; Wasserfall CH; Larkin J; Schatz D; Atkinson MA; Triplett EW; Neu J; Lorca GL
    PLoS One; 2010 May; 5(5):e10507. PubMed ID: 20463897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactobacillus johnsonii N6.2 diminishes caspase-1 maturation in the gastrointestinal system of diabetes prone rats.
    Teixeira LD; Kling DN; Lorca GL; Gonzalez CF
    Benef Microbes; 2018 Apr; 9(3):527-539. PubMed ID: 29633641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of type 1 diabetes correlated to a Lactobacillus johnsonii N6.2-mediated Th17 bias.
    Lau K; Benitez P; Ardissone A; Wilson TD; Collins EL; Lorca G; Li N; Sankar D; Wasserfall C; Neu J; Atkinson MA; Shatz D; Triplett EW; Larkin J
    J Immunol; 2011 Mar; 186(6):3538-46. PubMed ID: 21317395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat.
    Visser JT; Lammers K; Hoogendijk A; Boer MW; Brugman S; Beijer-Liefers S; Zandvoort A; Harmsen H; Welling G; Stellaard F; Bos NA; Fasano A; Rozing J
    Diabetologia; 2010 Dec; 53(12):2621-8. PubMed ID: 20853098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats.
    Valladares R; Bojilova L; Potts AH; Cameron E; Gardner C; Lorca G; Gonzalez CF
    FASEB J; 2013 Apr; 27(4):1711-20. PubMed ID: 23303207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactobacillus johnsonii N6.2 stimulates the innate immune response through Toll-like receptor 9 in Caco-2 cells and increases intestinal crypt Paneth cell number in biobreeding diabetes-prone rats.
    Kingma SD; Li N; Sun F; Valladares RB; Neu J; Lorca GL
    J Nutr; 2011 Jun; 141(6):1023-8. PubMed ID: 21490291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of two strains of
    Li Y; Li X; Nie C; Wu Y; Luo R; Chen C; Niu J; Zhang W
    Front Microbiol; 2023; 14():1249628. PubMed ID: 37727287
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Marcial GE; Ford AL; Haller MJ; Gezan SA; Harrison NA; Cai D; Meyer JL; Perry DJ; Atkinson MA; Wasserfall CH; Garrett T; Gonzalez CF; Brusko TM; Dahl WJ; Lorca GL
    Front Immunol; 2017; 8():655. PubMed ID: 28659913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential mechanisms explaining why hydrolyzed casein-based diets outclass single amino acid-based diets in the prevention of autoimmune diabetes in diabetes-prone BB rats.
    Visser JT; Bos NA; Harthoorn LF; Stellaard F; Beijer-Liefers S; Rozing J; van Tol EA
    Diabetes Metab Res Rev; 2012 Sep; 28(6):505-13. PubMed ID: 22539454
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Teixeira LD; Torrez Lamberti MF; DeBose-Scarlett E; Bahadiroglu E; Garrett TJ; Gardner CL; Meyer JL; Lorca GL; Gonzalez CF
    Front Nutr; 2021; 8():757256. PubMed ID: 34722616
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Bai Y; Lyu M; Fukunaga M; Watanabe S; Iwatani S; Miyanaga K; Yamamoto N
    Food Funct; 2022 Oct; 13(21):11021-11033. PubMed ID: 36069670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in intestinal morphology and permeability in the biobreeding rat before the onset of type 1 diabetes.
    Neu J; Reverte CM; Mackey AD; Liboni K; Tuhacek-Tenace LM; Hatch M; Li N; Caicedo RA; Schatz DA; Atkinson M
    J Pediatr Gastroenterol Nutr; 2005 May; 40(5):589-95. PubMed ID: 15861021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets.
    Wei HK; Xue HX; Zhou ZX; Peng J
    Animal; 2017 Feb; 11(2):193-201. PubMed ID: 27416730
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Yin Z; Wang K; Liu Y; Li Y; He F; Yin J; Tang W
    Animals (Basel); 2024 Feb; 14(3):. PubMed ID: 38338136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intravaginal injection of Lactobacillus johnsonii may modulates oviductal microbiota and mucosal barrier function of laying hens.
    Nii T; Shinkoda T; Isobe N; Yoshimura Y
    Poult Sci; 2023 Aug; 102(8):102699. PubMed ID: 37270892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oral exposure to diabetes-promoting food or immunomodulators in neonates alters gut cytokines and diabetes.
    Scott FW; Rowsell P; Wang GS; Burghardt K; Kolb H; Flohé S
    Diabetes; 2002 Jan; 51(1):73-8. PubMed ID: 11756325
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Wang H; Sun Y; Xin J; Zhang T; Sun N; Ni X; Zeng D; Bai Y
    Front Microbiol; 2020; 11():1941. PubMed ID: 32903531
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Wan Z; Zhang X; Jia X; Qin Y; Sun N; Xin J; Zeng Y; Jing B; Fang J; Pan K; Zeng D; Bai Y; Wang H; Ma H; Ni X
    Front Immunol; 2022; 13():1007737. PubMed ID: 36304467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.
    Liu HY; Roos S; Jonsson H; Ahl D; Dicksved J; Lindberg JE; Lundh T
    Physiol Rep; 2015 Apr; 3(4):. PubMed ID: 25847917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocked conversion of Lactobacillus johnsonii derived acetate to butyrate mediates copper-induced epithelial barrier damage in a pig model.
    Wen Y; Yang L; Wang Z; Liu X; Gao M; Zhang Y; Wang J; He P
    Microbiome; 2023 Sep; 11(1):218. PubMed ID: 37777765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.