These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 20463928)
1. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants. Sul YT Int J Nanomedicine; 2010 Apr; 5():87-100. PubMed ID: 20463928 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Osseointegration of Titanium Implants by Surface Modification with Silicon-doped Titania Nanotubes. Zhao X; You L; Wang T; Zhang X; Li Z; Ding L; Li J; Xiao C; Han F; Li B Int J Nanomedicine; 2020; 15():8583-8594. PubMed ID: 33173295 [TBL] [Abstract][Full Text] [Related]
3. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Salou L; Hoornaert A; Louarn G; Layrolle P Acta Biomater; 2015 Jan; 11():494-502. PubMed ID: 25449926 [TBL] [Abstract][Full Text] [Related]
4. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Oh SH; Finõnes RR; Daraio C; Chen LH; Jin S Biomaterials; 2005 Aug; 26(24):4938-43. PubMed ID: 15769528 [TBL] [Abstract][Full Text] [Related]
5. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327 [TBL] [Abstract][Full Text] [Related]
6. Effects of a cell adhesion molecule coating on the blasted surface of titanium implants on bone healing in the rabbit femur. Park JW; Lee SG; Choi BJ; Suh JY Int J Oral Maxillofac Implants; 2007; 22(4):533-41. PubMed ID: 17929513 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of mesoporous titanium oxide nanotubes based on layer-by-layer assembly. Ai S; He Q; Tian Y; Li J J Nanosci Nanotechnol; 2007 Jul; 7(7):2534-7. PubMed ID: 17663278 [TBL] [Abstract][Full Text] [Related]
8. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features. Rajyalakshmi A; Ercan B; Balasubramanian K; Webster TJ Int J Nanomedicine; 2011; 6():1765-71. PubMed ID: 21980239 [TBL] [Abstract][Full Text] [Related]
9. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. Feighan JE; Goldberg VM; Davy D; Parr JA; Stevenson S J Bone Joint Surg Am; 1995 Sep; 77(9):1380-95. PubMed ID: 7673290 [TBL] [Abstract][Full Text] [Related]
10. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Wang N; Li H; Lü W; Li J; Wang J; Zhang Z; Liu Y Biomaterials; 2011 Oct; 32(29):6900-11. PubMed ID: 21733571 [TBL] [Abstract][Full Text] [Related]
11. Osseointegration of commercial microstructured titanium implants incorporating magnesium: a histomorphometric study in rabbit cancellous bone. Park JW; An CH; Jeong SH; Suh JY Clin Oral Implants Res; 2012 Mar; 23(3):294-300. PubMed ID: 21435010 [TBL] [Abstract][Full Text] [Related]
12. Highly flexible coaxial nanohybrids made from porous TiO2 nanotubes. Wang D; Liu Y; Wang C; Zhou F; Liu W ACS Nano; 2009 May; 3(5):1249-57. PubMed ID: 19413294 [TBL] [Abstract][Full Text] [Related]
13. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. Brammer KS; Oh S; Cobb CJ; Bjursten LM; van der Heyde H; Jin S Acta Biomater; 2009 Oct; 5(8):3215-23. PubMed ID: 19447210 [TBL] [Abstract][Full Text] [Related]
14. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur. Cohen DJ; Cheng A; Sahingur K; Clohessy RM; Hopkins LB; Boyan BD; Schwartz Z Biomed Mater; 2017 Apr; 12(2):025021. PubMed ID: 28452335 [TBL] [Abstract][Full Text] [Related]
15. [ Han TX; Ju SY; He L; Jiang QS Zhonghua Kou Qiang Yi Xue Za Zhi; 2022 Jun; 57(6):618-624. PubMed ID: 35692006 [No Abstract] [Full Text] [Related]
16. Determining optimal surface roughness of TiO(2) blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Mustafa K; Wennerberg A; Wroblewski J; Hultenby K; Lopez BS; Arvidson K Clin Oral Implants Res; 2001 Oct; 12(5):515-25. PubMed ID: 11564113 [TBL] [Abstract][Full Text] [Related]
17. Self-assembled metallic nanowires on a dielectric support: Pd on rutile TiO2(110). Humphrey DS; Cabailh G; Pang CL; Muryn CA; Cavill SA; Marchetto H; Potenza A; Dhesi SS; Thornton G Nano Lett; 2009 Jan; 9(1):155-9. PubMed ID: 19113893 [TBL] [Abstract][Full Text] [Related]
18. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Sul YT; Johansson CB; Jeong Y; Wennerberg A; Albrektsson T Clin Oral Implants Res; 2002 Jun; 13(3):252-9. PubMed ID: 12010155 [TBL] [Abstract][Full Text] [Related]
19. Histomorphometric and removal torque analysis for TiO2-blasted titanium implants. An experimental study on dogs. Gotfredsen K; Nimb L; Hjörting-Hansen E; Jensen JS; Holmén A Clin Oral Implants Res; 1992 Jun; 3(2):77-84. PubMed ID: 15900672 [TBL] [Abstract][Full Text] [Related]
20. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Cooper LF; Zhou Y; Takebe J; Guo J; Abron A; Holmén A; Ellingsen JE Biomaterials; 2006 Feb; 27(6):926-36. PubMed ID: 16112191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]