These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 20464023)
1. Ferrocene-like iron bis(dicarbollide), [3-Fe(III)-(1,2-C(2)B(9)H(11))(2)](-). The first experimental and theoretical refinement of a paramagnetic (11)B NMR spectrum. Pennanen TO; Machácek J; Taubert S; Vaara J; Hnyk D Phys Chem Chem Phys; 2010 Jul; 12(26):7018-25. PubMed ID: 20464023 [TBL] [Abstract][Full Text] [Related]
2. Dynamics and magnetic resonance properties of Sc3C2@C80 and its monoanion. Taubert S; Straka M; Pennanen TO; Sundholm D; Vaara J Phys Chem Chem Phys; 2008 Dec; 10(47):7158-68. PubMed ID: 19039350 [TBL] [Abstract][Full Text] [Related]
3. NMR and EPR studies of the bis(pyridine) and bis(tert-butyl isocyanide) complexes of iron(III) octaethylchlorin. Cai S; Lichtenberger DL; Walker FA Inorg Chem; 2005 Mar; 44(6):1890-903. PubMed ID: 15762715 [TBL] [Abstract][Full Text] [Related]
4. Paramagnetic perturbation of the 19F NMR chemical shift in fluorinated cysteine by O2: a theoretical study. Li X; Rinkevicius Z; Tu Y; Tian H; Agren H J Phys Chem B; 2009 Aug; 113(31):10916-22. PubMed ID: 19606811 [TBL] [Abstract][Full Text] [Related]
5. Understanding the NMR chemical shifts for 6-halopurines: role of structure, solvent and relativistic effects. Standara S; Malináková K; Marek R; Marek J; Hocek M; Vaara J; Straka M Phys Chem Chem Phys; 2010 May; 12(19):5126-39. PubMed ID: 20445915 [TBL] [Abstract][Full Text] [Related]
6. Linking local environments and hyperfine shifts: a combined experimental and theoretical (31)P and (7)Li solid-state NMR study of paramagnetic Fe(III) phosphates. Kim J; Middlemiss DS; Chernova NA; Zhu BY; Masquelier C; Grey CP J Am Chem Soc; 2010 Dec; 132(47):16825-40. PubMed ID: 21053901 [TBL] [Abstract][Full Text] [Related]
7. NMR chemical shifts as a tool to analyze first principles molecular dynamics simulations in condensed phases: the case of liquid water. Banyai DR; Murakhtina T; Sebastiani D Magn Reson Chem; 2010 Dec; 48 Suppl 1():S56-60. PubMed ID: 21104763 [TBL] [Abstract][Full Text] [Related]
8. Theoretical determination of the NMR spectrum of liquid ethanol. Zarzycki P; Rustad JR J Phys Chem A; 2009 Jan; 113(1):291-7. PubMed ID: 19072326 [TBL] [Abstract][Full Text] [Related]
9. Computational studies of 13C NMR chemical shifts of saccharides. Taubert S; Konschin H; Sundholm D Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565 [TBL] [Abstract][Full Text] [Related]
10. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH. Straka M; Lantto P; Räsänen M; Vaara J J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389 [TBL] [Abstract][Full Text] [Related]
11. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion. Strohmeier M; Barich DH; Grant DM; Miller JS; Pugmire RJ; Simons J J Phys Chem A; 2006 Jun; 110(25):7962-9. PubMed ID: 16789786 [TBL] [Abstract][Full Text] [Related]
12. Fluxionality in a paramagnetic seven-coordinate iron(II) complex: a variable-temperature, two-dimensional NMR and DFT study. Lonnon DG; Ball GE; Taylor I; Craig DC; Colbran SB Inorg Chem; 2009 Jun; 48(11):4863-72. PubMed ID: 19400558 [TBL] [Abstract][Full Text] [Related]
13. Noninnocence of the ligand glyoxal-bis(2-mercaptoanil). The electronic structures of [Fe(gma)]2, [Fe(gma)(py)] x py, [Fe(gma)(CN)]1-/0, [Fe(gma)I], and [Fe(gma)(PR3)(n)] (n = 1, 2). Experimental and theoretical evidence for "excited state" coordination. Ghosh P; Bill E; Weyhermüller T; Neese F; Wieghardt K J Am Chem Soc; 2003 Feb; 125(5):1293-308. PubMed ID: 12553831 [TBL] [Abstract][Full Text] [Related]
14. Theoretical investigation on 1H and 13C NMR chemical shifts of small alkanes and chloroalkanes. d'Antuono P; Botek E; Champagne B; Spassova M; Denkova P J Chem Phys; 2006 Oct; 125(14):144309. PubMed ID: 17042592 [TBL] [Abstract][Full Text] [Related]
15. Electronic structures of six-coordinate ferric porphyrin complexes with weak axial ligands: usefulness of 13C NMR chemical shifts. Hoshino A; Ohgo Y; Nakamura M Inorg Chem; 2005 Oct; 44(21):7333-44. PubMed ID: 16212360 [TBL] [Abstract][Full Text] [Related]
16. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies? Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829 [TBL] [Abstract][Full Text] [Related]
17. Quantifying weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl: a combined computational and experimental investigation of NMR chemical shifts in the solid state. Uldry AC; Griffin JM; Yates JR; Pérez-Torralba M; María MD; Webber AL; Beaumont ML; Samoson A; Claramunt RM; Pickard CJ; Brown SP J Am Chem Soc; 2008 Jan; 130(3):945-54. PubMed ID: 18166050 [TBL] [Abstract][Full Text] [Related]
18. Structure validation of natural products by quantum-mechanical GIAO calculations of 13C NMR chemical shifts. Barone G; Gomez-Paloma L; Duca D; Silvestri A; Riccio R; Bifulco G Chemistry; 2002 Jul; 8(14):3233-9. PubMed ID: 12203353 [TBL] [Abstract][Full Text] [Related]
19. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols. Abraham RJ; Mobli M Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232 [TBL] [Abstract][Full Text] [Related]
20. Calculation of NMR chemical shifts in organic solids: accounting for motional effects. Dumez JN; Pickard CJ J Chem Phys; 2009 Mar; 130(10):104701. PubMed ID: 19292543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]