These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 20464342)

  • 1. Autonomic control of cardiorespiratory interactions in fish, amphibians and reptiles.
    Taylor EW; Leite CA; Skovgaard N
    Braz J Med Biol Res; 2010 Jul; 43(7):600-10. PubMed ID: 20464342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of respiration in fish, amphibians and reptiles.
    Taylor EW; Leite CA; McKenzie DJ; Wang T
    Braz J Med Biol Res; 2010 May; 43(5):409-24. PubMed ID: 20396858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview of the phylogeny of cardiorespiratory control in vertebrates with some reflections on the 'Polyvagal Theory'.
    Taylor EW; Wang T; Leite CAC
    Biol Psychol; 2022 Jul; 172():108382. PubMed ID: 35777519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central control of the cardiovascular and respiratory systems and their interactions in vertebrates.
    Taylor EW; Jordan D; Coote JH
    Physiol Rev; 1999 Jul; 79(3):855-916. PubMed ID: 10390519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phylogeny and ontogeny of autonomic control of the heart and cardiorespiratory interactions in vertebrates.
    Taylor EW; Leite CA; Sartori MR; Wang T; Abe AS; Crossley DA
    J Exp Biol; 2014 Mar; 217(Pt 5):690-703. PubMed ID: 24574385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiorespiratory interactions previously identified as mammalian are present in the primitive lungfish.
    Monteiro DA; Taylor EW; Sartori MR; Cruz AL; Rantin FT; Leite CAC
    Sci Adv; 2018 Feb; 4(2):eaaq0800. PubMed ID: 29507882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central control of cardiorespiratory interactions in fish.
    Taylor EW; Leite CA; Levings JJ
    Acta Histochem; 2009; 111(3):257-67. PubMed ID: 19193400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor asymmetries in fishes, amphibians, and reptiles.
    Stancher G; Sovrano VA; Vallortigara G
    Prog Brain Res; 2018; 238():33-56. PubMed ID: 30097199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiovascular dynamics in fishes, amphibians, and reptiles.
    Johansen K
    Ann N Y Acad Sci; 1965 Sep; 127(1):414-42. PubMed ID: 5217273
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence for a respiratory component, similar to mammalian respiratory sinus arrhythmia, in the heart rate variability signal from the rattlesnake, Crotalus durissus terrificus.
    Campbell HA; Leite CA; Wang T; Skals M; Abe AS; Egginton S; Rantin FT; Bishop CM; Taylor EW
    J Exp Biol; 2006 Jul; 209(Pt 14):2628-36. PubMed ID: 16809454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The autonomic control and functional significance of the changes in heart rate associated with air breathing in the jeju, Hoplerythrinus unitaeniatus.
    McKenzie DJ; Campbell HA; Taylor EW; Micheli M; Rantin FT; Abe AS
    J Exp Biol; 2007 Dec; 210(Pt 23):4224-32. PubMed ID: 18025020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The respiratory consequences of feeding in amphibians and reptiles.
    Wang T; Busk M; Overgaard J
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Mar; 128(3):535-49. PubMed ID: 11246043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative anatomy of the autonomic nervous system.
    Nilsson S
    Auton Neurosci; 2011 Nov; 165(1):3-9. PubMed ID: 20444653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between specialized cells, capillaries and intermediary cytofibrillary elements. XVth note. Biological evolution of the respiratory stereotype and subsystem in aquatic vertebrates.
    Mârza VD
    Morphol Embryol (Bucur); 1981; 27(4):283-97. PubMed ID: 6460168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [On mechanisms of triggering of primary excitation rhythms in vertebrates (phylo- and ontogenic aspects)].
    Belich AI; Konstantinova NN; Pavlova NG
    Zh Evol Biokhim Fiziol; 2009; 45(6):612-21. PubMed ID: 20063784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fish, amphibian, and reptile analgesia.
    Machin KL
    Vet Clin North Am Exot Anim Pract; 2001 Jan; 4(1):19-33. PubMed ID: 11217460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The basis of vagal efferent control of heart rate in a neotropical fish, the pacu, Piaractus mesopotamicus.
    Taylor EW; Leite CA; Florindo LH; Beläo T; Rantin FT
    J Exp Biol; 2009 Apr; 212(Pt 7):906-13. PubMed ID: 19282487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoreceptor modulation of endogenous respiratory rhythms in vertebrates.
    Smatresk NJ
    Am J Physiol; 1990 Nov; 259(5 Pt 2):R887-97. PubMed ID: 2240273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-base balance in the transition from water breathing to air breathing. SAM-TR-70-5.
    Howell BJ
    Tech Rep SAM-TR; 1970 Jan; ():270-5. PubMed ID: 5310340
    [No Abstract]   [Full Text] [Related]  

  • 20. The origins of cerebral asymmetry: a review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians.
    Bisazza A; Rogers LJ; Vallortigara G
    Neurosci Biobehav Rev; 1998 May; 22(3):411-26. PubMed ID: 9579329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.