BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 20464391)

  • 1. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.
    Ma M; Liu ZL
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):829-45. PubMed ID: 20464391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae.
    Hou L
    Appl Biochem Biotechnol; 2010 Feb; 160(4):1084-93. PubMed ID: 19214789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae.
    Ding J; Huang X; Zhang L; Zhao N; Yang D; Zhang K
    Appl Microbiol Biotechnol; 2009 Nov; 85(2):253-63. PubMed ID: 19756577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Ethanol tolerance in yeast: molecular mechanisms and genetic engineering].
    Zhang Q; Zhao X; Jiang R; Li Q; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2009 Apr; 25(4):481-7. PubMed ID: 19637619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
    Endo A; Nakamura T; Shima J
    FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations.
    Devantier R; Scheithauer B; Villas-Bôas SG; Pedersen S; Olsson L
    Biotechnol Bioeng; 2005 Jun; 90(6):703-14. PubMed ID: 15812801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.
    Ramirez-Córdova J; Drnevich J; Madrigal-Pulido JA; Arrizon J; Allen K; Martínez-Velázquez M; Alvarez-Maya I
    Antonie Van Leeuwenhoek; 2012 Aug; 102(2):247-55. PubMed ID: 22535436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering yeast transcription machinery for improved ethanol tolerance and production.
    Alper H; Moxley J; Nevoigt E; Fink GR; Stephanopoulos G
    Science; 2006 Dec; 314(5805):1565-8. PubMed ID: 17158319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.
    Nisamedtinov I; Lindsey GG; Karreman R; Orumets K; Koplimaa M; Kevvai K; Paalme T
    FEMS Yeast Res; 2008 Sep; 8(6):829-38. PubMed ID: 18625028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae.
    Kim NR; Yang J; Kwon H; An J; Choi W; Kim W
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8227-38. PubMed ID: 23709042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global gene expression analysis of Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity conditions.
    Liu CG; Lin YH; Bai FW
    Biotechnol J; 2013 Nov; 8(11):1332-40. PubMed ID: 23625881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray.
    Dinh TN; Nagahisa K; Yoshikawa K; Hirasawa T; Furusawa C; Shimizu H
    Bioprocess Biosyst Eng; 2009 Aug; 32(5):681-8. PubMed ID: 19125301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components.
    Yu KO; Jung J; Ramzi AB; Choe SH; Kim SW; Park C; Han SO
    Enzyme Microb Technol; 2012 Sep; 51(4):237-43. PubMed ID: 22883559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of RCN1 and RSA3 as ethanol-tolerant genes in Saccharomyces cerevisiae using a high copy barcoded library.
    Anderson MJ; Barker SL; Boone C; Measday V
    FEMS Yeast Res; 2012 Feb; 12(1):48-60. PubMed ID: 22093065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates.
    Liu ZL
    Appl Microbiol Biotechnol; 2011 May; 90(3):809-25. PubMed ID: 21380517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast.
    Espinazo-Romeu M; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2008 Nov; 8(7):1127-36. PubMed ID: 18554307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae.
    Jung YJ; Park HD
    Biotechnol Lett; 2005 Dec; 27(23-24):1855-9. PubMed ID: 16328979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.