BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20464499)

  • 1. Multiphysics simulation of a microfluidic perfusion chamber for brain slice physiology.
    Caicedo HH; Hernandez M; Fall CP; Eddington DT
    Biomed Microdevices; 2010 Oct; 12(5):761-7. PubMed ID: 20464499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain slice stimulation using a microfluidic network and standard perfusion chamber.
    Shaikh Mohammed J; Caicedo H; Fall CP; Eddington DT
    J Vis Exp; 2007; (8):302. PubMed ID: 18989411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment.
    Blake AJ; Pearce TM; Rao NS; Johnson SM; Williams JC
    Lab Chip; 2007 Jul; 7(7):842-9. PubMed ID: 17594002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying microfluidics to electrophysiology.
    Eddington DT
    J Vis Exp; 2007; (8):301. PubMed ID: 18989410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic add-on for standard electrophysiology chambers.
    Mohammed JS; Caicedo HH; Fall CP; Eddington DT
    Lab Chip; 2008 Jul; 8(7):1048-55. PubMed ID: 18584078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and characterization of a microfluidic chamber incorporating fluid ports with active suction for localized chemical stimulation of brain slices.
    Tang YT; Kim J; López-Valdés HE; Brennan KC; Ju YS
    Lab Chip; 2011 Jul; 11(13):2247-54. PubMed ID: 21562669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three dimensional MEMS microfluidic perfusion system for thick brain slice cultures.
    Choi Y; McClain MA; LaPlaca MC; Frazier AB; Allen MG
    Biomed Microdevices; 2007 Feb; 9(1):7-13. PubMed ID: 17091392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability.
    Rambani K; Vukasinovic J; Glezer A; Potter SM
    J Neurosci Methods; 2009 Jun; 180(2):243-54. PubMed ID: 19443039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates.
    Cooksey GA; Sip CG; Folch A
    Lab Chip; 2009 Feb; 9(3):417-26. PubMed ID: 19156291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic bubble perfusion device for brain slice culture.
    Saleheen A; Acharyya D; Prosser RA; Baker CA
    Anal Methods; 2021 Mar; 13(11):1364-1373. PubMed ID: 33644791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Devices for Characterizing Pore-scale Event Processes in Porous Media for Oil Recovery Applications.
    Vavra ED; Zeng Y; Xiao S; Hirasaki GJ; Biswal SL
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leakage-free bonding of porous membranes into layered microfluidic array systems.
    Chueh BH; Huh D; Kyrtsos CR; Houssin T; Futai N; Takayama S
    Anal Chem; 2007 May; 79(9):3504-8. PubMed ID: 17388566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permanent superhydrophilic surface modification in microporous polydimethylsiloxane sponge for multi-functional applications.
    Bakshi S; Pandey K; Bose S; Gunjan ; Paul D; Nayak R
    J Colloid Interface Sci; 2019 Sep; 552():34-42. PubMed ID: 31102847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological implications of polydimethylsiloxane-based microfluidic cell culture.
    Regehr KJ; Domenech M; Koepsel JT; Carver KC; Ellison-Zelski SJ; Murphy WL; Schuler LA; Alarid ET; Beebe DJ
    Lab Chip; 2009 Aug; 9(15):2132-9. PubMed ID: 19606288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfused drop microfluidic device for brain slice culture-based drug discovery.
    Liu J; Pan L; Cheng X; Berdichevsky Y
    Biomed Microdevices; 2016 Jun; 18(3):46. PubMed ID: 27194028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabrication of cylindrical microfluidic channel networks for microvascular research.
    Huang Z; Li X; Martins-Green M; Liu Y
    Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.