These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20464499)

  • 21. Removal of background signals from fluorescence thermometry measurements in PDMS microchannels using fluorescence lifetime imaging.
    Robinson T; Schaerli Y; Wootton R; Hollfelder F; Dunsby C; Baldwin G; Neil M; French P; deMello A
    Lab Chip; 2009 Dec; 9(23):3437-41. PubMed ID: 19904413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability.
    Lovchik RD; Tonna N; Bianco F; Matteoli M; Delamarche E
    Biomed Microdevices; 2010 Apr; 12(2):275-82. PubMed ID: 20013313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiscale Porosity Microfluidics to Study Bacterial Transport in Heterogeneous Chemical Landscapes.
    Salek MM; Carrara F; Zhou J; Stocker R; Jimenez-Martinez J
    Adv Sci (Weinh); 2024 May; 11(20):e2310121. PubMed ID: 38445967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly.
    Wu Q; Ren W; Yu Z; Dong E; Zhang S; Xu RX
    J Biomed Opt; 2015; 20(12):121308. PubMed ID: 26456687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic device for single-molecule experiments with enhanced photostability.
    Lemke EA; Gambin Y; Vandelinder V; Brustad EM; Liu HW; Schultz PG; Groisman A; Deniz AA
    J Am Chem Soc; 2009 Sep; 131(38):13610-2. PubMed ID: 19772358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Precise spatial and temporal control of oxygen within in vitro brain slices via microfluidic gas channels.
    Mauleon G; Fall CP; Eddington DT
    PLoS One; 2012; 7(8):e43309. PubMed ID: 22905255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chamber and microfluidic probe for microperfusion of organotypic brain slices.
    Queval A; Ghattamaneni NR; Perrault CM; Gill R; Mirzaei M; McKinney RA; Juncker D
    Lab Chip; 2010 Feb; 10(3):326-34. PubMed ID: 20091004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic perfusion culture.
    Hattori K; Sugiura S; Kanamori T
    Methods Mol Biol; 2014; 1104():251-63. PubMed ID: 24297421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlling flow in microfluidic channels with a manually actuated pin valve.
    Brett ME; Zhao S; Stoia JL; Eddington DT
    Biomed Microdevices; 2011 Aug; 13(4):633-9. PubMed ID: 21472409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perfusion culture of mammalian cells in a microfluidic channel with a built-in pillar array.
    Zhang C
    Methods Mol Biol; 2012; 853():83-94. PubMed ID: 22323142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drug permeability assay using microhole-trapped cells in a microfluidic device.
    Yeon JH; Park JK
    Anal Chem; 2009 Mar; 81(5):1944-51. PubMed ID: 19203200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical and experimental study of capillary-driven flow of PCR solution in hybrid hydrophobic microfluidic networks.
    Ramalingam N; Warkiani ME; Ramalingam N; Keshavarzi G; Hao-Bing L; Hai-Qing TG
    Biomed Microdevices; 2016 Aug; 18(4):68. PubMed ID: 27432321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Deformation of Polydimethylsiloxane (PDMS) Microfluidic Channels Filled with Embedded Circular Obstacles under Certain Circumstances.
    Roh C; Lee J; Kang C
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27322239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis.
    Sanati Nezhad A; Ghanbari M; Agudelo CG; Naghavi M; Packirisamy M; Bhat RB; Geitmann A
    Biomed Microdevices; 2014 Feb; 16(1):23-33. PubMed ID: 24013680
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a microfluidic device for determination of cell osmotic behavior and membrane transport properties.
    Chen HH; Purtteman JJ; Heimfeld S; Folch A; Gao D
    Cryobiology; 2007 Dec; 55(3):200-9. PubMed ID: 17889847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Permeability of porous materials determined from the Euler characteristic.
    Scholz C; Wirner F; Götz J; Rüde U; Schröder-Turk GE; Mecke K; Bechinger C
    Phys Rev Lett; 2012 Dec; 109(26):264504. PubMed ID: 23368569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.
    Sochol RD; Lu A; Lei J; Iwai K; Lee LP; Lin L
    Lab Chip; 2014 May; 14(9):1585-94. PubMed ID: 24632685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.