BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 204649)

  • 21. A comparison of three preparations of cytochrome c oxidase. Optical absorbance spectra, EPR spectra and reaction towards ligands.
    Lodder AL; van Gelder BF
    Biochim Biophys Acta; 1994 Jun; 1186(1-2):67-74. PubMed ID: 8011669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resonance Raman spectroscopy of the integral quinol oxidase complex of Sulfolobus acidocaldarius.
    Gerscher S; Döpner S; Hildebrandt P; Gleissner M; Schäfer G
    Biochemistry; 1996 Oct; 35(39):12796-803. PubMed ID: 8841122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Responses of the a3 component of cytochrome c oxidase to substrate and ligand addition.
    Shaw RW; Hansen RE; Beinert H
    Biochim Biophys Acta; 1978 Oct; 504(1):187-99. PubMed ID: 30477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic state of heme in cytochrome oxidase III. The magnetic susceptibility of beef heart cytochrome oxidase and some of its derivatives from 7-200 K. Direct evidence for an antiferromagnetically coupled Fe (III)/Cu (II) pair.
    Tweedle MF; Wilson LJ
    J Biol Chem; 1978 Nov; 253(22):8065-71. PubMed ID: 213427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resonance Raman spectroscopy of cytochrome oxidase using Soret excitation: selective enhancement, indicator bands, and structural significance for cytochromes a and a3.
    Woodruff WH; Dallinger RF; Antalis TM; Palmer G
    Biochemistry; 1981 Mar; 20(5):1332-8. PubMed ID: 6261789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of copper depletion on structural aspects of cytochrome c oxidase.
    Weintraub ST; Muhoberac BB; Wharton DC
    J Biol Chem; 1982 May; 257(9):4940-6. PubMed ID: 6279652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transient-state reduction and steady-state kinetic studies of menaquinol oxidase from Bacillus subtilis, cytochrome aa3-600 nm. Spectroscopic characterization of the steady-state species.
    Mattatall NR; Cameron LM; Hill BC
    Biochemistry; 2001 Nov; 40(44):13331-41. PubMed ID: 11683643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the partially reduced cyanide-inhibited derivative of cytochrome c oxidase by optical, electron-paramagnetic-resonance and magnetic-circular-dichroism spectroscopy.
    Johnson MK; Eglinton DG; Gooding PE; Greenwood C; Thomson AJ
    Biochem J; 1981 Mar; 193(3):699-708. PubMed ID: 6272717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mössbauer study of a bacterial cytochrome oxidase: cytochrome c1aa3 from Thermus thermophilus.
    Kent TA; Münck E; Dunham WR; Filter WF; Findling KL; Yoshida T; Fee JA
    J Biol Chem; 1982 Nov; 257(21):12489-92. PubMed ID: 6290469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resonance Raman and optical spectroscopic monitoring of heme a redox states in cytochrome c oxidase during potentiometric titrations.
    Harmon PA; Hendler RW; Levin IW
    Biochemistry; 1994 Jan; 33(3):699-707. PubMed ID: 8292597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast cytochrome bo from Escherichia coli binds two molecules of nitric oxide at CuB.
    Butler CS; Seward HE; Greenwood C; Thomson AJ
    Biochemistry; 1997 Dec; 36(51):16259-66. PubMed ID: 9405060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron-transfer processes in carboxy-cytochrome c oxidase after photodissociation of cytochrome a3 2+ . CO.
    Boelens R; Wever R
    Biochim Biophys Acta; 1979 Aug; 547(2):296-310. PubMed ID: 223638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytochrome bd oxidase from Azotobacter vinelandii. Purification and quantitation of ligand binding to the oxygen reduction site.
    Jünemann S; Wrigglesworth JM
    J Biol Chem; 1995 Jul; 270(27):16213-20. PubMed ID: 7608187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interactions of copper and a3 in cytochrome oxidase.
    Yong FC; King TE
    Biochem Biophys Res Commun; 1970 Mar; 38(5):940-6. PubMed ID: 4314385
    [No Abstract]   [Full Text] [Related]  

  • 36. Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase.
    Eglinton DG; Johnson MK; Thomson AJ; Gooding PE; Greenwood C
    Biochem J; 1980 Nov; 191(2):319-31. PubMed ID: 6263244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potentiometric titration of cytochrome-bo type quinol oxidase of Escherichia coli: evidence for heme-heme and copper-heme interaction.
    Salerno JC; Bolgiano B; Ingledew WJ
    FEBS Lett; 1989 Apr; 247(1):101-5. PubMed ID: 2540043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependences of the cytochrome potentials. Characterization of site-site interactions.
    Blair DF; Ellis WR; Wang H; Gray HB; Chan SI
    J Biol Chem; 1986 Sep; 261(25):11524-37. PubMed ID: 3017934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction in cytochrome c oxidase between cytochrome a3 ligated with nitric oxide and cytochrome a.
    Mascarenhas R; Wei YH; Scholes CP; King TE
    J Biol Chem; 1983 May; 258(9):5348-51. PubMed ID: 6304086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods.
    Dodson ED; Zhao XJ; Caughey WS; Elliott CM
    Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.