These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 20465515)
1. Mitochondrial targeting for photochemotherapy. Can selective tumor cell killing be predicted based on n-octanol/water distribution coefficients? Belostotsky I; da Silva SM; Paez MG; Indig GL Biotech Histochem; 2011 Oct; 86(5):302-14. PubMed ID: 20465515 [TBL] [Abstract][Full Text] [Related]
2. Photophysical, photochemical, and tumor-selectivity properties of bromine derivatives of rhodamine-123. Lacerda SH; Abraham B; Stringfellow TC; Indig GL Photochem Photobiol; 2005; 81(6):1430-8. PubMed ID: 16149863 [TBL] [Abstract][Full Text] [Related]
3. Effect of the lipophilic/hydrophilic character of cationic triarylmethane dyes on their selective phototoxicity toward tumor cells. Kandela IK; Lee W; Indig GL Biotech Histochem; 2003; 78(3-4):157-69. PubMed ID: 14714879 [TBL] [Abstract][Full Text] [Related]
4. Effect of molecular structure on the selective phototoxicity of triarylmethane dyes towards tumor cells. Kandela IK; Bartlett JA; Indig GL Photochem Photobiol Sci; 2002 May; 1(5):309-14. PubMed ID: 12653467 [TBL] [Abstract][Full Text] [Related]
5. Effect of molecular structure on the performance of triarylmethane dyes as therapeutic agents for photochemical purging of autologous bone marrow grafts from residual tumor cells. Indig GL; Anderson GS; Nichols MG; Bartlett JA; Mellon WS; Sieber F J Pharm Sci; 2000 Jan; 89(1):88-99. PubMed ID: 10664541 [TBL] [Abstract][Full Text] [Related]
6. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Modica-Napolitano JS; Aprille JR Adv Drug Deliv Rev; 2001 Jul; 49(1-2):63-70. PubMed ID: 11377803 [TBL] [Abstract][Full Text] [Related]
7. Interaction of rhodamine 123 with living cells studied by flow cytometry. Darzynkiewicz Z; Traganos F; Staiano-Coico L; Kapuscinski J; Melamed MR Cancer Res; 1982 Mar; 42(3):799-806. PubMed ID: 7059978 [TBL] [Abstract][Full Text] [Related]
8. Dose response of human tumor cells to rhodamine 123 and laser phototherapy. Saxton RE; Haghighat S; Plant D; Lufkin R; Soudant J; Castro DJ Laryngoscope; 1994 Aug; 104(8 Pt 1):1013-8. PubMed ID: 8052065 [TBL] [Abstract][Full Text] [Related]
9. Rhodamine dyes as potential agents for photochemotherapy of cancer in human bladder carcinoma cells. Shea CR; Chen N; Wimberly J; Hasan T Cancer Res; 1989 Jul; 49(14):3961-5. PubMed ID: 2736534 [TBL] [Abstract][Full Text] [Related]
10. Analysis of methylglyoxal bis(guanylhydrazone)-induced alterations of hamster tumor mitochondria by correlated studies of selective rhodamine binding, ultrastructural damage, DNA replication, and reversibility. Nass MM Cancer Res; 1984 Jun; 44(6):2677-88. PubMed ID: 6722801 [TBL] [Abstract][Full Text] [Related]
11. Bio-distribution and subcellular localization of Hypericin and its role in PDT induced apoptosis in cancer cells. Ali SM; Olivo M Int J Oncol; 2002 Sep; 21(3):531-40. PubMed ID: 12168096 [TBL] [Abstract][Full Text] [Related]
12. Novel phosphonium salts display in vitro and in vivo cytotoxic activity against human ovarian cancer cell lines. Manetta A; Gamboa G; Nasseri A; Podnos YD; Emma D; Dorion G; Rawlings L; Carpenter PM; Bustamante A; Patel J; Rideout D Gynecol Oncol; 1996 Feb; 60(2):203-12. PubMed ID: 8631539 [TBL] [Abstract][Full Text] [Related]
13. Selective killing of carcinoma cells "in vitro" by lipophilic-cationic compounds: a cellular basis. Lampidis TJ; Hasin Y; Weiss MJ; Chen LB Biomed Pharmacother; 1985; 39(5):220-6. PubMed ID: 3936557 [TBL] [Abstract][Full Text] [Related]
14. Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. Oseroff AR; Ohuoha D; Ara G; McAuliffe D; Foley J; Cincotta L Proc Natl Acad Sci U S A; 1986 Dec; 83(24):9729-33. PubMed ID: 3467335 [TBL] [Abstract][Full Text] [Related]
15. New cytotoxic rosamine derivatives selectively accumulate in the mitochondria of cancer cells. Lim SH; Wu L; Burgess K; Lee HB Anticancer Drugs; 2009 Jul; 20(6):461-8. PubMed ID: 19387338 [TBL] [Abstract][Full Text] [Related]
16. Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Lampidis TJ; Bernal SD; Summerhayes IC; Chen LB Cancer Res; 1983 Feb; 43(2):716-20. PubMed ID: 6848187 [TBL] [Abstract][Full Text] [Related]
17. Quinoline derivative KB3-1 potentiates paclitaxel induced cytotoxicity and cycle arrest via multidrug resistance reversal in MES-SA/DX5 cancer cells. Koo JS; Choi WC; Rhee YH; Lee HJ; Lee EO; Ahn KS; Bae HS; Ahn KS; Kang JM; Choi SU; Kim MO; Lu J; Kim SH Life Sci; 2008 Nov; 83(21-22):700-8. PubMed ID: 18845169 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial toxicity of cationic photosensitizers for photochemotherapy. Modica-Napolitano JS; Joyal JL; Ara G; Oseroff AR; Aprille JR Cancer Res; 1990 Dec; 50(24):7876-81. PubMed ID: 2174736 [TBL] [Abstract][Full Text] [Related]
19. Meso-substituted tetra-cationic porphyrins photosensitize the death of human fibrosarcoma cells via lysosomal targeting. Ricchelli F; Franchi L; Miotto G; Borsetto L; Gobbo S; Nikolov P; Bommer JC; Reddi E Int J Biochem Cell Biol; 2005 Feb; 37(2):306-19. PubMed ID: 15474977 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and in vitro biological evaluation of lipophilic cation conjugated photosensitizers for targeting mitochondria. Rajaputra P; Nkepang G; Watley R; You Y Bioorg Med Chem; 2013 Jan; 21(2):379-87. PubMed ID: 23245573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]