These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2046602)

  • 1. Theory and design of "shortened" multiantenna microwave applicators with controllable SAR patterns.
    Leybovich LB; Nussbaum GH; Straube WL; Emami BN
    Med Phys; 1991; 18(2):178-83. PubMed ID: 2046602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heating patterns generated by phase modulation of a hexagonal array of interstitial antennas.
    Zhang Y; Joines WT; Oleson JR
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):92-7. PubMed ID: 2026438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-antenna applicator for hyperthermia of tumours at intermediate depth.
    Leybovich LB; Emami B; Myerson RJ; Straube WL; Sathiaseelan V
    Int J Hyperthermia; 1991; 7(3):455-64. PubMed ID: 1919141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preclinical evaluation of submillimeter diameter microwave interstitial hyperthermia applicators.
    Gottlieb C; Moffat F; Hagmann M; Babij T; Abitbol A; Lewin A; Houdek P; Schwade J
    J Microw Power Electromagn Energy; 1990; 25(3):149-60. PubMed ID: 2266468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Design of an microwave applicator using for tumor in superficial layer].
    Sun B; Lu X; Cao Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2010 May; 34(3):198-201. PubMed ID: 20812645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interstitial microwave hyperthermia and brachytherapy for malignancies of the vulva and vagina. I: Design and testing of a modified intracavitary obturator.
    Ryan TP; Taylor JH; Coughlin CT
    Int J Radiat Oncol Biol Phys; 1992; 23(1):189-99. PubMed ID: 1572816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a microwave array hyperthermia applicator with a semicircular reflector.
    Sabariego RV; Landesa L; Obelleiro F
    Med Biol Eng Comput; 1999 Sep; 37(5):612-7. PubMed ID: 10723899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia.
    Lagendijk JJ
    J Microw Power; 1983 Dec; 18(4):367-75. PubMed ID: 6561256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complications resulting from spurious fields produced by a microwave applicator used for hyperthermia.
    Scott RS; Chou CK; McCumber M; McDougall J; Luk KH
    Int J Radiat Oncol Biol Phys; 1986 Oct; 12(10):1883-6. PubMed ID: 3759541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of minimally invasive directional antennas for microwave tissue ablation.
    Sebek J; Curto S; Bortel R; Prakash P
    Int J Hyperthermia; 2017 Feb; 33(1):51-60. PubMed ID: 27380439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature distribution produced in models by three microwave applicators at 433.92 megahertz.
    Lehmann JF; Guy AW; Stonebridge JB; Warren CG; DeLateur BJ
    Arch Phys Med Rehabil; 1975 Apr; 56(4):145-51. PubMed ID: 1119923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An eccentrically coated asymmetric antenna applicator for intracavitary hyperthermia treatment of cancer.
    Manry CW; Broschat SL; Chou CK; McDougall JA
    IEEE Trans Biomed Eng; 1992 Sep; 39(9):935-42. PubMed ID: 1473822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A phantom system for microwave treatment of intraocular tumors.
    Finger PT; Selkin R; Grabczyk J; Fetter RW
    Retina; 1993; 13(1):63-8. PubMed ID: 8460282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of heating patterns of a microwave interstitial antenna array at various insertion depths.
    Zhang Y; Joines WT; Oleson JR
    Int J Hyperthermia; 1991; 7(1):197-207. PubMed ID: 2051073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of microwave diathermy applicators using free space electric field mapping.
    Witters DM; Kantor G
    Phys Med Biol; 1981 Nov; 26(6):1099-114. PubMed ID: 7323148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.