These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 20466045)
1. Remediation of cadmium contaminated irrigation and drinking water: a large scale approach. Bandara JM; Wijewardena HV; Seneviratne HM Toxicol Lett; 2010 Sep; 198(1):89-92. PubMed ID: 20466045 [TBL] [Abstract][Full Text] [Related]
2. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664 [TBL] [Abstract][Full Text] [Related]
3. Chronic renal failure among farm families in cascade irrigation systems in Sri Lanka associated with elevated dietary cadmium levels in rice and freshwater fish (Tilapia). Bandara JM; Senevirathna DM; Dasanayake DM; Herath V; Bandara JM; Abeysekara T; Rajapaksha KH Environ Geochem Health; 2008 Oct; 30(5):465-78. PubMed ID: 18200439 [TBL] [Abstract][Full Text] [Related]
4. Testing of outstanding individuals of Thlaspi caerulescens for cadmium phytoextraction. Schwartz C; Sirguey C; Peronny S; Reeves RD; Bourgaud F; Morel JL Int J Phytoremediation; 2006; 8(4):339-57. PubMed ID: 17305307 [TBL] [Abstract][Full Text] [Related]
5. Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Maxted AP; Black CR; West HM; Crout NM; McGrath SP; Young SD Environ Pollut; 2007 Dec; 150(3):363-72. PubMed ID: 17379365 [TBL] [Abstract][Full Text] [Related]
6. Ecological risk assessment on a cadmium contaminated soil landfill--a preliminary evaluation based on toxicity tests on local species and site-specific information. Chen CM; Liu MC Sci Total Environ; 2006 Apr; 359(1-3):120-9. PubMed ID: 15964610 [TBL] [Abstract][Full Text] [Related]
7. Pollution of River Mahaweli and farmlands under irrigation by cadmium from agricultural inputs leading to a chronic renal failure epidemic among farmers in NCP, Sri Lanka. Bandara JM; Wijewardena HV; Bandara YM; Jayasooriya RG; Rajapaksha H Environ Geochem Health; 2011 Oct; 33(5):439-53. PubMed ID: 20981564 [TBL] [Abstract][Full Text] [Related]
8. Buildup of heavy metals in soil-water-plant continuum as influenced by irrigation with contaminated effluent. Sachan S; Singh SK; Srivastava PC J Environ Sci Eng; 2007 Oct; 49(4):293-6. PubMed ID: 18476378 [TBL] [Abstract][Full Text] [Related]
9. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19. Pan R; Cao L; Zhang R J Hazard Mater; 2009 Nov; 171(1-3):761-6. PubMed ID: 19592158 [TBL] [Abstract][Full Text] [Related]
10. Cadmium induced renal dysfunction among residents of rice farming area downstream from a zinc-mineralized belt in Thailand. Honda R; Swaddiwudhipong W; Nishijo M; Mahasakpan P; Teeyakasem W; Ruangyuttikarn W; Satarug S; Padungtod C; Nakagawa H Toxicol Lett; 2010 Sep; 198(1):26-32. PubMed ID: 20435107 [TBL] [Abstract][Full Text] [Related]
11. Biosorption of aquatic cadmium(II) by unmodified rice straw. Ding Y; Jing D; Gong H; Zhou L; Yang X Bioresour Technol; 2012 Jun; 114():20-5. PubMed ID: 22445266 [TBL] [Abstract][Full Text] [Related]
12. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Song A; Li Z; Zhang J; Xue G; Fan F; Liang Y J Hazard Mater; 2009 Dec; 172(1):74-83. PubMed ID: 19616891 [TBL] [Abstract][Full Text] [Related]
14. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Yanai J; Zhao FJ; McGrath SP; Kosaki T Environ Pollut; 2006 Jan; 139(1):167-75. PubMed ID: 15998562 [TBL] [Abstract][Full Text] [Related]
15. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Liang HM; Lin TH; Chiou JM; Yeh KC Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408 [TBL] [Abstract][Full Text] [Related]
16. Mercury and cadmium contamination of irrigation water, sediment, soil and shallow groundwater in a wastewater-irrigated field in Tianjin, China. Wu GH; Cao SS Bull Environ Contam Toxicol; 2010 Mar; 84(3):336-41. PubMed ID: 20111947 [TBL] [Abstract][Full Text] [Related]
17. Biosorptive removal of cadmium from contaminated groundwater and industrial effluents. Pandey PK; Verma Y; Choubey S; Pandey M; Chandrasekhar K Bioresour Technol; 2008 Jul; 99(10):4420-7. PubMed ID: 17892931 [TBL] [Abstract][Full Text] [Related]
18. Effects of chloride and co-contaminated zinc on cadmium accumulation within Thlaspi caerulescens and durum wheat. Liu Q; Tjoa A; Römheld V Bull Environ Contam Toxicol; 2007 Jul; 79(1):62-5. PubMed ID: 17599229 [No Abstract] [Full Text] [Related]
19. Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. Abhilash PC; Pandey VC; Srivastava P; Rakesh PS; Chandran S; Singh N; Thomas AP J Hazard Mater; 2009 Oct; 170(2-3):791-7. PubMed ID: 19523759 [TBL] [Abstract][Full Text] [Related]
20. Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? Liu MQ; Yanai J; Jiang RF; Zhang F; McGrath SP; Zhao FJ Chemosphere; 2008 Apr; 71(7):1276-83. PubMed ID: 18262587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]