These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Collagen-reinforced electrospun silk fibroin tubular construct as small calibre vascular graft. Marelli B; Achilli M; Alessandrino A; Freddi G; Tanzi MC; Farè S; Mantovani D Macromol Biosci; 2012 Nov; 12(11):1566-74. PubMed ID: 23060093 [TBL] [Abstract][Full Text] [Related]
3. Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Catto V; Farè S; Cattaneo I; Figliuzzi M; Alessandrino A; Freddi G; Remuzzi A; Tanzi MC Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():101-11. PubMed ID: 26046273 [TBL] [Abstract][Full Text] [Related]
4. Electrospun scaffolds from silk fibroin and their cellular compatibility. Zhang K; Mo X; Huang C; He C; Wang H J Biomed Mater Res A; 2010 Jun; 93(3):976-83. PubMed ID: 19722283 [TBL] [Abstract][Full Text] [Related]
5. In vitro and in vivo characterization of a silk fibroin-coated polyester vascular prosthesis. Huang F; Sun L; Zheng J Artif Organs; 2008 Dec; 32(12):932-41. PubMed ID: 19133021 [TBL] [Abstract][Full Text] [Related]
6. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Zhou J; Cao C; Ma X Int J Biol Macromol; 2009 Dec; 45(5):504-10. PubMed ID: 19772871 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold. Wang S; Zhang Y; Wang H; Yin G; Dong Z Biomacromolecules; 2009 Aug; 10(8):2240-4. PubMed ID: 19722559 [TBL] [Abstract][Full Text] [Related]
8. Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix. McClure MJ; Sell SA; Ayres CE; Simpson DG; Bowlin GL Biomed Mater; 2009 Oct; 4(5):055010. PubMed ID: 19815970 [TBL] [Abstract][Full Text] [Related]
9. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Liu H; Li X; Zhou G; Fan H; Fan Y Biomaterials; 2011 May; 32(15):3784-93. PubMed ID: 21376391 [TBL] [Abstract][Full Text] [Related]
10. Bilayered vascular grafts based on silk proteins. Liu S; Dong C; Lu G; Lu Q; Li Z; Kaplan DL; Zhu H Acta Biomater; 2013 Nov; 9(11):8991-9003. PubMed ID: 23851155 [TBL] [Abstract][Full Text] [Related]
11. [Progress and prospect of electrospun silk fibroin in construction of tissue-engineering scaffold]. Chen L; Zhu Y; Li Y; Liu Y; Yu J Sheng Wu Gong Cheng Xue Bao; 2011 Jun; 27(6):831-7. PubMed ID: 22034811 [TBL] [Abstract][Full Text] [Related]
12. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Yeo IS; Oh JE; Jeong L; Lee TS; Lee SJ; Park WH; Min BM Biomacromolecules; 2008 Apr; 9(4):1106-16. PubMed ID: 18327908 [TBL] [Abstract][Full Text] [Related]
13. Electrospun silk fibroin-gelatin composite tubular matrices as scaffolds for small diameter blood vessel regeneration. Marcolin C; Draghi L; Tanzi M; Faré S J Mater Sci Mater Med; 2017 May; 28(5):80. PubMed ID: 28397163 [TBL] [Abstract][Full Text] [Related]
14. Study on the preparation of collagen-modified silk fibroin films and their properties. Tang Y; Cao C; Ma X; Chen C; Zhu H Biomed Mater; 2006 Dec; 1(4):242-6. PubMed ID: 18458412 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of burst pressure competent vascular grafts via electrospinning: effects of microstructure. Drilling S; Gaumer J; Lannutti J J Biomed Mater Res A; 2009 Mar; 88(4):923-34. PubMed ID: 18384169 [TBL] [Abstract][Full Text] [Related]
16. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Chung S; Ingle NP; Montero GA; Kim SH; King MW Acta Biomater; 2010 Jun; 6(6):1958-67. PubMed ID: 20004258 [TBL] [Abstract][Full Text] [Related]