BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20466157)

  • 1. Reconstitution and functional analysis of kinetochore subcomplexes.
    Gestaut DR; Cooper J; Asbury CL; Davis TN; Wordeman L
    Methods Cell Biol; 2010; 95():641-56. PubMed ID: 20466157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics.
    Pearson CG; Maddox PS; Zarzar TR; Salmon ED; Bloom K
    Mol Biol Cell; 2003 Oct; 14(10):4181-95. PubMed ID: 14517328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CLIP-170 facilitates the formation of kinetochore-microtubule attachments.
    Tanenbaum ME; Galjart N; van Vugt MA; Medema RH
    EMBO J; 2006 Jan; 25(1):45-57. PubMed ID: 16362039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Live cell approaches for studying kinetochore-microtubule interactions in Drosophila.
    Buster DW; Sharp DJ
    Methods Mol Med; 2007; 137():139-60. PubMed ID: 18085227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Manipulation and Super-Resolution Fluorescence Imaging of Individual Kinetochores Coupled to Microtubule Tips.
    Deng Y; Asbury CL
    Methods Mol Biol; 2017; 1486():437-467. PubMed ID: 27844439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAST/Orbit has a role in microtubule-kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity.
    Maiato H; Sampaio P; Lemos CL; Findlay J; Carmena M; Earnshaw WC; Sunkel CE
    J Cell Biol; 2002 May; 157(5):749-60. PubMed ID: 12034769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular analysis of kinetochore-microtubule attachment in budding yeast.
    He X; Rines DR; Espelin CW; Sorger PK
    Cell; 2001 Jul; 106(2):195-206. PubMed ID: 11511347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural organization of the kinetochore-microtubule interface.
    DeLuca JG; Musacchio A
    Curr Opin Cell Biol; 2012 Feb; 24(1):48-56. PubMed ID: 22154944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular architecture of vertebrate kinetochores.
    Takeuchi K; Fukagawa T
    Exp Cell Res; 2012 Jul; 318(12):1367-74. PubMed ID: 22391098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualizing kinetochore architecture.
    Alushin G; Nogales E
    Curr Opin Struct Biol; 2011 Oct; 21(5):661-9. PubMed ID: 21862320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron cryotomography analysis of Dam1C/DASH at the kinetochore-spindle interface in situ.
    Ng CT; Deng L; Chen C; Lim HH; Shi J; Surana U; Gan L
    J Cell Biol; 2019 Feb; 218(2):455-473. PubMed ID: 30504246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation.
    Kline SL; Cheeseman IM; Hori T; Fukagawa T; Desai A
    J Cell Biol; 2006 Apr; 173(1):9-17. PubMed ID: 16585270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergent Properties of the Metaphase Spindle.
    Reber S; Hyman AA
    Cold Spring Harb Perspect Biol; 2015 Jul; 7(7):a015784. PubMed ID: 26134313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Blinkin: a kinetochore protein responsible for spindle checkpoint and microtubule-attachment].
    Kiyomitsu T; Obuse C; Yanagida M
    Tanpakushitsu Kakusan Koso; 2009 Mar; 54(4 Suppl):421-6. PubMed ID: 21089486
    [No Abstract]   [Full Text] [Related]  

  • 15. Molecular mechanisms of kinetochore capture by spindle microtubules.
    Tanaka K; Mukae N; Dewar H; van Breugel M; James EK; Prescott AR; Antony C; Tanaka TU
    Nature; 2005 Apr; 434(7036):987-94. PubMed ID: 15846338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles.
    Tanaka K; Kitamura E; Kitamura Y; Tanaka TU
    J Cell Biol; 2007 Jul; 178(2):269-81. PubMed ID: 17620411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of protein deacetylation by trichostatin A impairs microtubule-kinetochore attachment.
    Ma Y; Cai S; Lu Q; Lu X; Jiang Q; Zhou J; Zhang C
    Cell Mol Life Sci; 2008 Oct; 65(19):3100-9. PubMed ID: 18759129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring Kinetochore-Microtubule Attachment Stability in Cultured Cells.
    DeLuca KF; Herman JA; DeLuca JG
    Methods Mol Biol; 2016; 1413():147-68. PubMed ID: 27193848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How do kinetochores CLASP dynamic microtubules?
    Maiato H; Rieder CL; Earnshaw WC; Sunkel CE
    Cell Cycle; 2003; 2(6):511-4. PubMed ID: 14504462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics.
    Maiato H; Fairley EA; Rieder CL; Swedlow JR; Sunkel CE; Earnshaw WC
    Cell; 2003 Jun; 113(7):891-904. PubMed ID: 12837247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.