BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

765 related articles for article (PubMed ID: 20466428)

  • 21. Pulsar perimetry in the diagnosis of early glaucoma.
    Zeppieri M; Brusini P; Parisi L; Johnson CA; Sampaolesi R; Salvetat ML
    Am J Ophthalmol; 2010 Jan; 149(1):102-12. PubMed ID: 19800607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visual field testing with the new Humphrey Matrix: a comparison between the FDT N-30 and Matrix N-30-F tests.
    Brusini P; Salvetat ML; Zeppieri M; Tosoni C; Parisi L; Felletti M
    Acta Ophthalmol Scand; 2006 Jun; 84(3):351-6. PubMed ID: 16704697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Humphrey matrix frequency doubling perimetry for detection of visual-field defects in open-angle glaucoma.
    Clement CI; Goldberg I; Healey PR; Graham S
    Br J Ophthalmol; 2009 May; 93(5):582-8. PubMed ID: 18669543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Low-pressure Glaucoma Treatment Study (LoGTS) study design and baseline characteristics of enrolled patients.
    Krupin T; Liebmann JM; Greenfield DS; Rosenberg LF; Ritch R; Yang JW;
    Ophthalmology; 2005 Mar; 112(3):376-85. PubMed ID: 15745762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Testing for glaucoma with frequency-doubling perimetry in normals, ocular hypertensives, and glaucoma patients.
    Horn FK; Wakili N; Jünemann AM; Korth M
    Graefes Arch Clin Exp Ophthalmol; 2002 Aug; 240(8):658-65. PubMed ID: 12192460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitivity and specificity of frequency-doubling technology, tendency-oriented perimetry, SITA Standard and SITA Fast perimetry in perimetrically inexperienced individuals.
    Pierre-Filho Pde T; Schimiti RB; de Vasconcellos JP; Costa VP
    Acta Ophthalmol Scand; 2006 Jun; 84(3):345-50. PubMed ID: 16704696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated flicker perimetry in glaucoma using Octopus 311: a comparative study with the Humphrey Matrix.
    Matsumoto C; Takada S; Okuyama S; Arimura E; Hashimoto S; Shimomura Y
    Acta Ophthalmol Scand; 2006 Apr; 84(2):210-5. PubMed ID: 16637839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frequency-doubling perimetry: comparison with standard automated perimetry to detect glaucoma.
    Leeprechanon N; Giangiacomo A; Fontana H; Hoffman D; Caprioli J
    Am J Ophthalmol; 2007 Feb; 143(2):263-271. PubMed ID: 17178091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short wavelength automated perimetry, frequency doubling technology perimetry, and pattern electroretinography for prediction of progressive glaucomatous standard visual field defects.
    Bayer AU; Erb C
    Ophthalmology; 2002 May; 109(5):1009-17. PubMed ID: 11986111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma.
    Boland MV; Zhang L; Broman AT; Jampel HD; Quigley HA
    Ophthalmology; 2008 Feb; 115(2):239-245.e2. PubMed ID: 18082888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency doubling perimetry and short-wavelength automated perimetry to detect early glaucoma.
    Leeprechanon N; Giaconi JA; Manassakorn A; Hoffman D; Caprioli J
    Ophthalmology; 2007 May; 114(5):931-7. PubMed ID: 17397926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma.
    Choi J; Cho HS; Lee CH; Kook MS
    Ophthalmology; 2006 Nov; 113(11):1954-60. PubMed ID: 16935338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silent cerebral infarct and visual field progression in newly diagnosed normal-tension glaucoma: a cohort study.
    Leung DY; Tham CC; Li FC; Kwong YY; Chi SC; Lam DS
    Ophthalmology; 2009 Jul; 116(7):1250-6. PubMed ID: 19481813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation between intraocular pressure level and optic disc changes in high-tension glaucoma suspects.
    Tanito M; Itai N; Dong J; Ohira A; Chihara E
    Ophthalmology; 2003 May; 110(5):915-21. PubMed ID: 12750089
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for a learning effect in short-wavelength automated perimetry.
    Wild JM; Kim LS; Pacey IE; Cunliffe IA
    Ophthalmology; 2006 Feb; 113(2):206-15. PubMed ID: 16458091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Correlation between confocal tomography of the optic nerve (HRT) and the perimetric frequency doubling technology].
    Sampaolesi R; Brusini P; Sampaolesi JR
    Klin Monbl Augenheilkd; 2003 Nov; 220(11):754-66. PubMed ID: 14634902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detecting early functional damage in glaucoma suspect and ocular hypertensive patients with the multifocal VEP technique.
    Thienprasiddhi P; Greenstein VC; Chu DH; Xu L; Liebmann JM; Ritch R; Hood DC
    J Glaucoma; 2006 Aug; 15(4):321-7. PubMed ID: 16865010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison between microperimetry and standard achromatic perimetry of the central visual field in eyes with glaucomatous paracentral visual-field defects.
    Lima VC; Prata TS; De Moraes CG; Kim J; Seiple W; Rosen RB; Liebmann JM; Ritch R
    Br J Ophthalmol; 2010 Jan; 94(1):64-7. PubMed ID: 19692366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variability components of standard automated perimetry and frequency-doubling technology perimetry.
    Spry PG; Johnson CA; McKendrick AM; Turpin A
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1404-10. PubMed ID: 11328758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The ability of short-wavelength automated perimetry to predict conversion to glaucoma.
    van der Schoot J; Reus NJ; Colen TP; Lemij HG
    Ophthalmology; 2010 Jan; 117(1):30-4. PubMed ID: 19896194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.