BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 20466524)

  • 1. A novel electrochemical strategy for improving blood compatibility of titanium-based biomaterials.
    Yang Y; Lai Y; Zhang Q; Wu K; Zhang L; Lin C; Tang P
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):309-13. PubMed ID: 20466524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.
    Huang Q; Yang Y; Hu R; Lin C; Sun L; Vogler EA
    Colloids Surf B Biointerfaces; 2015 Jan; 125():134-41. PubMed ID: 25481855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the surface functionalities of titania nanotube arrays.
    Vasilev K; Poh Z; Kant K; Chan J; Michelmore A; Losic D
    Biomaterials; 2010 Jan; 31(3):532-40. PubMed ID: 19819014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rewritable superhydrophilic-superhydrophobic patterns on a sintered titanium dioxide substrate.
    Nakata K; Nishimoto S; Yuda Y; Ochiai T; Murakami T; Fujishima A
    Langmuir; 2010 Jul; 26(14):11628-30. PubMed ID: 20552954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface structure and properties of biomedical NiTi shape memory alloy after Fenton's oxidation.
    Chu CL; Hu T; Wu SL; Dong YS; Yin LH; Pu YP; Lin PH; Chung CY; Yeung KW; Chu PK
    Acta Biomater; 2007 Sep; 3(5):795-806. PubMed ID: 17466609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical formation of self-organized anodic nanotube coating on Ti-28Zr-8Nb biomedical alloy surface.
    Feng XJ; Macak JM; Albu SP; Schmuki P
    Acta Biomater; 2008 Mar; 4(2):318-23. PubMed ID: 17923448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro corrosion study of different TiO2 nanotube layers on titanium in solution with serum proteins.
    Yu WQ; Qiu J; Zhang FQ
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):400-5. PubMed ID: 21377339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemocompatibility of titania nanotube arrays.
    Smith BS; Yoriya S; Grissom L; Grimes CA; Popat KC
    J Biomed Mater Res A; 2010 Nov; 95(2):350-60. PubMed ID: 20629021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring of the titanium surface by immobilization of heparin/fibronectin complexes for improving blood compatibility and endothelialization: an in vitro study.
    Li G; Yang P; Liao Y; Huang N
    Biomacromolecules; 2011 Apr; 12(4):1155-68. PubMed ID: 21332186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes.
    Bauer S; Park J; von der Mark K; Schmuki P
    Acta Biomater; 2008 Sep; 4(5):1576-82. PubMed ID: 18485845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of diameters and crystals of titanium dioxide nanotube arrays on blood compatibility and endothelial cell behaviors.
    Gong Z; Hu Y; Gao F; Quan L; Liu T; Gong T; Pan C
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110521. PubMed ID: 31569001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of TiO2 nanotubes on porous titanium scaffold and biocompatibility evaluation in vitro and in vivo.
    Fan X; Feng B; Liu Z; Tan J; Zhi W; Lu X; Wang J; Weng J
    J Biomed Mater Res A; 2012 Dec; 100(12):3422-7. PubMed ID: 22791689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces.
    Minagar S; Berndt CC; Wang J; Ivanova E; Wen C
    Acta Biomater; 2012 Aug; 8(8):2875-88. PubMed ID: 22542885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and activation of micro-arc oxidation films on a TLM titanium alloy.
    Yu S; Yu ZT
    Biomed Mater; 2008 Dec; 3(4):044112. PubMed ID: 19029614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nano-topographical features of Ti/TiO(2) electrode surface on cell response and electrochemical stability in artificial saliva.
    Demetrescu I; Pirvu C; Mitran V
    Bioelectrochemistry; 2010 Aug; 79(1):122-9. PubMed ID: 20189888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting.
    Das C; Roy P; Yang M; Jha H; Schmuki P
    Nanoscale; 2011 Aug; 3(8):3094-6. PubMed ID: 21761039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No platelet can adhere--largely improved blood compatibility on nanostructured superhydrophobic surfaces.
    Sun T; Tan H; Han D; Fu Q; Jiang L
    Small; 2005 Oct; 1(10):959-63. PubMed ID: 17193377
    [No Abstract]   [Full Text] [Related]  

  • 19. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.
    Oh SH; Finõnes RR; Daraio C; Chen LH; Jin S
    Biomaterials; 2005 Aug; 26(24):4938-43. PubMed ID: 15769528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays.
    Kafi AK; Wu G; Chen A
    Biosens Bioelectron; 2008 Dec; 24(4):566-71. PubMed ID: 18640021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.