BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 20467065)

  • 1. Evaluation of the cognitive effects of travel technique in complex real and virtual environments.
    Suma EA; Finkelstein SL; Reid M; V Babu S; Ulinski AC; Hodges LF
    IEEE Trans Vis Comput Graph; 2010; 16(4):690-702. PubMed ID: 20467065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of detection thresholds for redirected walking techniques.
    Steinicke F; Bruder G; Jerald J; Frenz H; Lappe M
    IEEE Trans Vis Comput Graph; 2010; 16(1):17-27. PubMed ID: 19910658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment.
    Zanbaka CA; Lok BC; Babu SV; Ulinski AC; Hodges LF
    IEEE Trans Vis Comput Graph; 2005; 11(6):694-705. PubMed ID: 16270862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VU-flow: a visualization tool for analyzing navigation in virtual environments.
    Chittaro L; Ranon R; Ieronutti L
    IEEE Trans Vis Comput Graph; 2006; 12(6):1475-85. PubMed ID: 17073370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual/Real transfer of spatial learning: impact of activity according to the retention delay.
    Wallet G; Sauzéon H; Rodrigues J; Larrue F; N'kaoua B
    Stud Health Technol Inform; 2010; 154():145-9. PubMed ID: 20543287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence against integration of spatial maps in humans: generality across real and virtual environments.
    Sturz BR; Bodily KD; Katz JS; Kelly DM
    Anim Cogn; 2009 Mar; 12(2):237-47. PubMed ID: 18766392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the effect of quality of graphics on distance judgments in virtual environments: a comparison of verbal reports and blind walking.
    Kunz BR; Wouters L; Smith D; Thompson WB; Creem-Regehr SH
    Atten Percept Psychophys; 2009 Aug; 71(6):1284-93. PubMed ID: 19633344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redirecting walking and driving for natural navigation in immersive virtual environments.
    Bruder G; Interrante V; Phillips L; Steinicke F
    IEEE Trans Vis Comput Graph; 2012 Apr; 18(4):538-45. PubMed ID: 22402680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time tracking of visually attended objects in virtual environments and its application to LOD.
    Lee S; Kim GJ; Choi S
    IEEE Trans Vis Comput Graph; 2009; 15(1):6-19. PubMed ID: 19008552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual environment navigation tasks and the assessment of cognitive deficits in individuals with brain injury.
    Livingstone SA; Skelton RW
    Behav Brain Res; 2007 Dec; 185(1):21-31. PubMed ID: 17727970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training in virtual environments: transfer to real world tasks and equivalence to real task training.
    Rose FD; Attree EA; Brooks BM; Parslow DM; Penn PR; Ambihaipahan N
    Ergonomics; 2000 Apr; 43(4):494-511. PubMed ID: 10801083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gravity and spatial orientation in virtual 3D-mazes.
    Vidal M; Lipshits M; McIntyre J; Berthoz A
    J Vestib Res; 2003; 13(4-6):273-86. PubMed ID: 15096671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a data management tool for investigating multivariate space and free will experiences in virtual reality.
    Morie JF; Iyer K; Luigi DP; Williams J; Dozois A; Rizzo AS
    Appl Psychophysiol Biofeedback; 2005 Sep; 30(3):319-31. PubMed ID: 16167194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive ergonomics in virtual environments: development of an intuitive and appropriate input device for navigating in a virtual maze.
    Stefani O; Mager R; Mueller-Spahn F; Sulzenbacher H; Bekiaris E; Wiederhold BK; Patel H; Bullinger AH
    Appl Psychophysiol Biofeedback; 2005 Sep; 30(3):259-69. PubMed ID: 16167190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribbon networks for modeling navigable paths of autonomous agents in virtual environments.
    Willemsen P; Kearney JK; Wang H
    IEEE Trans Vis Comput Graph; 2006; 12(3):331-42. PubMed ID: 16640247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Navigation in virtual environment by the macaque monkey.
    Sato N; Sakata H; Tanaka Y; Taira M
    Behav Brain Res; 2004 Aug; 153(1):287-91. PubMed ID: 15219730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain activity in goal-directed movements in a real compared to a virtual environment using the Nintendo Wii.
    Baumeister J; Reinecke K; Cordes M; Lerch C; Weiss M
    Neurosci Lett; 2010 Aug; 481(1):47-50. PubMed ID: 20600604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of active navigation on object recognition in virtual environments.
    Hahm J; Lee K; Lim SL; Kim SY; Kim HT; Lee JH
    Cyberpsychol Behav; 2007 Apr; 10(2):305-8. PubMed ID: 17474852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurocognitive and psychophysiological analysis of human performance within virtual reality environments.
    Parsons TD; Iyer A; Cosand L; Courtney C; Rizzo AA
    Stud Health Technol Inform; 2009; 142():247-52. PubMed ID: 19377160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.