These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 20467195)
1. Characterization of the multi-drug efflux systems of pathogenic fungi using functional hyperexpression in Saccharomyces cerevisiae. Niimi M Nihon Ishinkin Gakkai Zasshi; 2010; 51(2):79-86. PubMed ID: 20467195 [TBL] [Abstract][Full Text] [Related]
2. The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates. Holmes AR; Keniya MV; Ivnitski-Steele I; Monk BC; Lamping E; Sklar LA; Cannon RD Antimicrob Agents Chemother; 2012 Mar; 56(3):1508-15. PubMed ID: 22203607 [TBL] [Abstract][Full Text] [Related]
3. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms. Sanglard D; Coste AT Antimicrob Agents Chemother; 2016 Jan; 60(1):229-38. PubMed ID: 26482310 [TBL] [Abstract][Full Text] [Related]
4. Vacuolar Sequestration of Azoles, a Novel Strategy of Azole Antifungal Resistance Conserved across Pathogenic and Nonpathogenic Yeast. Khandelwal NK; Wasi M; Nair R; Gupta M; Kumar M; Mondal AK; Gaur NA; Prasad R Antimicrob Agents Chemother; 2019 Mar; 63(3):. PubMed ID: 30642932 [TBL] [Abstract][Full Text] [Related]
5. STB5 is a negative regulator of azole resistance in Candida glabrata. Noble JA; Tsai HF; Suffis SD; Su Q; Myers TG; Bennett JE Antimicrob Agents Chemother; 2013 Feb; 57(2):959-67. PubMed ID: 23229483 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Sanguinetti M; Posteraro B; Fiori B; Ranno S; Torelli R; Fadda G Antimicrob Agents Chemother; 2005 Feb; 49(2):668-79. PubMed ID: 15673750 [TBL] [Abstract][Full Text] [Related]
7. Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Lamping E; Monk BC; Niimi K; Holmes AR; Tsao S; Tanabe K; Niimi M; Uehara Y; Cannon RD Eukaryot Cell; 2007 Jul; 6(7):1150-65. PubMed ID: 17513564 [TBL] [Abstract][Full Text] [Related]
8. Azole Resistance Reduces Susceptibility to the Tetrazole Antifungal VT-1161. Monk BC; Keniya MV; Sabherwal M; Wilson RK; Graham DO; Hassan HF; Chen D; Tyndall JDA Antimicrob Agents Chemother; 2019 Jan; 63(1):. PubMed ID: 30397057 [TBL] [Abstract][Full Text] [Related]
9. Modulation of the antifungal activity of new medicinal plant extracts active on Candida glabrata by the major transporters and regulators of the pleiotropic drug-resistance network in Saccharomyces cerevisiae. Kolaczkowski M; Kolaczkowska A; Stermitz FR Microb Drug Resist; 2009 Mar; 15(1):11-7. PubMed ID: 19216644 [TBL] [Abstract][Full Text] [Related]
10. Use of a yeast-based membrane protein expression technology to overexpress drug resistance efflux pumps. Lamping E; Cannon RD Methods Mol Biol; 2010; 666():219-50. PubMed ID: 20717788 [TBL] [Abstract][Full Text] [Related]
11. Heterologous Expression of Full-Length Lanosterol 14α-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provides Tools for Antifungal Discovery. Keniya MV; Ruma YN; Tyndall JDA; Monk BC Antimicrob Agents Chemother; 2018 Nov; 62(11):. PubMed ID: 30126959 [TBL] [Abstract][Full Text] [Related]
12. Beauvericin Potentiates Azole Activity via Inhibition of Multidrug Efflux, Blocks Candida albicans Morphogenesis, and Is Effluxed via Yor1 and Circuitry Controlled by Zcf29. Shekhar-Guturja T; Tebung WA; Mount H; Liu N; Köhler JR; Whiteway M; Cowen LE Antimicrob Agents Chemother; 2016 Dec; 60(12):7468-7480. PubMed ID: 27736764 [TBL] [Abstract][Full Text] [Related]
13. The Set1 Histone H3K4 Methyltransferase Contributes to Azole Susceptibility in a Species-Specific Manner by Differentially Altering the Expression of Drug Efflux Pumps and the Ergosterol Gene Pathway. Baker KM; Hoda S; Saha D; Gregor JB; Georgescu L; Serratore ND; Zhang Y; Cheng L; Lanman NA; Briggs SD Antimicrob Agents Chemother; 2022 May; 66(5):e0225021. PubMed ID: 35471041 [TBL] [Abstract][Full Text] [Related]
14. Learning the ABC of oral fungal drug resistance. Cannon RD; Holmes AR Mol Oral Microbiol; 2015 Dec; 30(6):425-37. PubMed ID: 26042641 [TBL] [Abstract][Full Text] [Related]
15. Abc1p is a multidrug efflux transporter that tips the balance in favor of innate azole resistance in Candida krusei. Lamping E; Ranchod A; Nakamura K; Tyndall JD; Niimi K; Holmes AR; Niimi M; Cannon RD Antimicrob Agents Chemother; 2009 Feb; 53(2):354-69. PubMed ID: 19015352 [TBL] [Abstract][Full Text] [Related]
16. Curcumin potentiates the fungicidal effect of dodecanol by inhibiting drug efflux in wild-type budding yeast. Yamawaki C; Oyama M; Yamaguchi Y; Ogita A; Tanaka T; Fujita KI Lett Appl Microbiol; 2019 Jan; 68(1):17-23. PubMed ID: 30276838 [TBL] [Abstract][Full Text] [Related]