These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20467673)

  • 1. From superhydrophobicity and water repellency to superhydrophilicity: smart polymer-functionalized surfaces.
    Stratakis E; Mateescu A; Barberoglou M; Vamvakaki M; Fotakis C; Anastasiadis SH
    Chem Commun (Camb); 2010 Jun; 46(23):4136-8. PubMed ID: 20467673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure.
    Mockenhaupt B; Ensikat HJ; Spaeth M; Barthlott W
    Langmuir; 2008 Dec; 24(23):13591-7. PubMed ID: 18959433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversibly switchable wettability.
    Xin B; Hao J
    Chem Soc Rev; 2010 Feb; 39(2):769-82. PubMed ID: 20111792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superhydrophilic and superwetting surfaces: definition and mechanisms of control.
    Drelich J; Chibowski E
    Langmuir; 2010 Dec; 26(24):18621-3. PubMed ID: 21090661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of surface hierarchy for extreme hydrophobicity.
    Kwon Y; Patankar N; Choi J; Lee J
    Langmuir; 2009 Jun; 25(11):6129-36. PubMed ID: 19466776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X; He J
    Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-nano hierarchically structured nylon 6,6 surfaces with unique wettability.
    Zhang L; Zhang X; Dai Z; Wu J; Zhao N; Xu J
    J Colloid Interface Sci; 2010 May; 345(1):116-9. PubMed ID: 20144830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature- and/or pH-Responsive Surfaces with Controllable Wettability: From Parahydrophobicity to Superhydrophilicity.
    Frysali MA; Anastasiadis SH
    Langmuir; 2017 Sep; 33(36):9106-9114. PubMed ID: 28793185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering sticky superomniphobic surfaces on transparent and flexible PDMS substrate.
    Dufour R; Harnois M; Coffinier Y; Thomy V; Boukherroub R; Senez V
    Langmuir; 2010 Nov; 26(22):17242-7. PubMed ID: 20954730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable wettability and rewritable wettability gradient from superhydrophilicity to superhydrophobicity.
    Wang L; Peng B; Su Z
    Langmuir; 2010 Jul; 26(14):12203-8. PubMed ID: 20415506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain-controlled switching of hierarchically wrinkled surfaces between superhydrophobicity and superhydrophilicity.
    Zhang Z; Zhang T; Zhang YW; Kim KS; Gao H
    Langmuir; 2012 Feb; 28(5):2753-60. PubMed ID: 22176536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces.
    Su Y; Ji B; Zhang K; Gao H; Huang Y; Hwang K
    Langmuir; 2010 Apr; 26(7):4984-9. PubMed ID: 20092298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer Brush Surfaces Showing Superhydrophobicity and Air-Bubble Repellency in a Variety of Organic Liquids.
    Dunderdale GJ; England MW; Urata C; Hozumi A
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12220-9. PubMed ID: 25988214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous formation of fractal structures on triglyceride surfaces with reference to their super water-repellent properties.
    Fang W; Mayama H; Tsujii K
    J Phys Chem B; 2007 Jan; 111(3):564-71. PubMed ID: 17228914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strategy of fast reversible wettability changes of WO3 surfaces between superhydrophilicity and superhydrophobicity.
    Gu C; Zhang J; Tu J
    J Colloid Interface Sci; 2010 Dec; 352(2):573-9. PubMed ID: 20851408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free-decay and resonant methods for investigating the fundamental limit of superhydrophobicity.
    Timonen JV; Latikka M; Ikkala O; Ras RH
    Nat Commun; 2013; 4():2398. PubMed ID: 24025991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.