These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
54 related articles for article (PubMed ID: 20467978)
21. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Sherameti I; Tripathi S; Varma A; Oelmüller R Mol Plant Microbe Interact; 2008 Jun; 21(6):799-807. PubMed ID: 18624643 [TBL] [Abstract][Full Text] [Related]
22. Cloning and expression analysis of a stress-induced GmIMT1 gene in soybean (Glycine max). Wang HT; Guo N; Zhao JM; Karthikeyan A; Xue D; Xue CC; Xu JY; Xu ZH; Gai JY; Xing H Genet Mol Res; 2014 Feb; 13(1):806-18. PubMed ID: 24615045 [TBL] [Abstract][Full Text] [Related]
23. Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Li XP; Tian AG; Luo GZ; Gong ZZ; Zhang JS; Chen SY Theor Appl Genet; 2005 May; 110(8):1355-62. PubMed ID: 15841365 [TBL] [Abstract][Full Text] [Related]
24. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Chen JQ; Meng XP; Zhang Y; Xia M; Wang XP Biotechnol Lett; 2008 Dec; 30(12):2191-8. PubMed ID: 18779926 [TBL] [Abstract][Full Text] [Related]
25. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Chen M; Wang QY; Cheng XG; Xu ZS; Li LC; Ye XG; Xia LQ; Ma YZ Biochem Biophys Res Commun; 2007 Feb; 353(2):299-305. PubMed ID: 17178106 [TBL] [Abstract][Full Text] [Related]
26. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. Jakoby M; Wang HY; Reidt W; Weisshaar B; Bauer P FEBS Lett; 2004 Nov; 577(3):528-34. PubMed ID: 15556641 [TBL] [Abstract][Full Text] [Related]
27. Genome-wide identification and expression analysis of the CPP-like gene family in soybean. Zhang L; Zhao HK; Wang YM; Yuan CP; Zhang YY; Li HY; Yan XF; Li QY; Dong YS Genet Mol Res; 2015 Feb; 14(1):1260-8. PubMed ID: 25730064 [TBL] [Abstract][Full Text] [Related]
29. Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field. de Paiva Rolla AA; de Fátima Corrêa Carvalho J; Fuganti-Pagliarini R; Engels C; do Rio A; Marin SR; de Oliveira MC; Beneventi MA; Marcelino-Guimarães FC; Farias JR; Neumaier N; Nakashima K; Yamaguchi-Shinozaki K; Nepomuceno AL Transgenic Res; 2014 Feb; 23(1):75-87. PubMed ID: 23807320 [TBL] [Abstract][Full Text] [Related]
30. Cloning and analysis of the soybean MEKK gene. Sha AH; Ba HP; Shan ZH; Chen HF; Chen SL; Qiu DZ; Zhou XA; Chen YH Genet Mol Res; 2015 Apr; 14(2):3625-32. PubMed ID: 25966131 [TBL] [Abstract][Full Text] [Related]
31. Comparative analysis of DNA methylation polymorphism in drought sensitive (HPKC2) and tolerant (HPK4) genotypes of horse Gram (Macrotyloma uniflorum). Bhardwaj J; Mahajan M; Yadav SK Biochem Genet; 2013 Aug; 51(7-8):493-502. PubMed ID: 23455692 [TBL] [Abstract][Full Text] [Related]
32. Differential expression analysis of a subset of GmNAC genes in shoots of two contrasting drought-responsive soybean cultivars DT51 and MTD720 under normal and drought conditions. Thu NB; Hoang XL; Doan H; Nguyen TH; Bui D; Thao NP; Tran LS Mol Biol Rep; 2014 Sep; 41(9):5563-9. PubMed ID: 24985975 [TBL] [Abstract][Full Text] [Related]
33. Transcriptomic changes due to water deficit define a general soybean response and accession-specific pathways for drought avoidance. Shin JH; Vaughn JN; Abdel-Haleem H; Chavarro C; Abernathy B; Kim KD; Jackson SA; Li Z BMC Plant Biol; 2015 Feb; 15():26. PubMed ID: 25644024 [TBL] [Abstract][Full Text] [Related]
34. Tree co-occurrence and transcriptomic response to drought. Swenson NG; Iida Y; Howe R; Wolf A; Umaña MN; Petprakob K; Turner BL; Ma K Nat Commun; 2017 Dec; 8(1):1996. PubMed ID: 29222461 [TBL] [Abstract][Full Text] [Related]
35. Analysis of the genetic divergence of soybean lines through hierarchical and Tocher optimization methods. Cantelli DA; Hamawaki OT; Rocha MR; Nogueira AP; Hamawaki RL; Sousa LB; Hamawaki CD Genet Mol Res; 2016 Oct; 15(4):. PubMed ID: 27808381 [TBL] [Abstract][Full Text] [Related]
36. Molecular Characterisation of Soybean Osmotins and Their Involvement in Drought Stress Response. Faillace GR; Caruso PB; Timmers LFSM; Favero D; Guzman FL; Rechenmacher C; de Oliveira-Busatto LA; de Souza ON; Bredemeier C; Bodanese-Zanettini MH Front Genet; 2021; 12():632685. PubMed ID: 34249077 [TBL] [Abstract][Full Text] [Related]
37. Twentieth century droughts and agriculture: Examples from impacts on soybean production in Kentucky, USA. Craft KE; Mahmood R; King SA; Goodrich G; Yan J Ambio; 2015 Oct; 44(6):557-68. PubMed ID: 25663526 [TBL] [Abstract][Full Text] [Related]
38. Overexpression of soybean DREB1 enhances drought stress tolerance of transgenic wheat in the field. Zhou Y; Chen M; Guo J; Wang Y; Min D; Jiang Q; Ji H; Huang C; Wei W; Xu H; Chen X; Li L; Xu Z; Cheng X; Wang C; Wang C; Ma Y J Exp Bot; 2020 Mar; 71(6):1842-1857. PubMed ID: 31875914 [TBL] [Abstract][Full Text] [Related]
39. Chitosan-GSNO nanoparticles: a positive modulator of drought stress tolerance in soybean. Methela NJ; Pande A; Islam MS; Rahim W; Hussain A; Lee DS; Mun BG; Maria Joseph Raj NP; Kim SJ; Kim Y; Yun BW BMC Plant Biol; 2023 Dec; 23(1):639. PubMed ID: 38082263 [TBL] [Abstract][Full Text] [Related]
40. Quantitative RT-PCR analysis of 20 transcription factor genes of MADS, ARF, HAP2, MBF and HB families in moisture stressed shoot and root tissues of sorghum. Aglawe SB; Fakrudin B; Patole CB; Bhairappanavar SB; Koti RV; Krishnaraj PU Physiol Mol Biol Plants; 2012 Oct; 18(4):287-300. PubMed ID: 24082491 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]