These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 2047078)
1. Generalizing Long's inversion of the matrix form of Prentice's equation and the concept of generalized inverse dioptric power. Harris WF Optom Vis Sci; 1991 Mar; 68(3):173-7. PubMed ID: 2047078 [TBL] [Abstract][Full Text] [Related]
2. Solving the matrix form of Prentice's equation for dioptric power. Harris WF Optom Vis Sci; 1991 Mar; 68(3):178-82. PubMed ID: 2047079 [TBL] [Abstract][Full Text] [Related]
3. Prentice's equation and generalizations. Harris WF Optom Vis Sci; 2000 Jul; 77(7):373-9. PubMed ID: 10939315 [TBL] [Abstract][Full Text] [Related]
5. Analysis of clinical approximation in applying Prentice's rule to decentration of spherocylinder lenses. Cobb CH Ophthalmic Physiol Opt; 1984; 4(3):265-73. PubMed ID: 6472856 [TBL] [Abstract][Full Text] [Related]
6. A generalization of Prentice's law for lenses with arbitrary refracting surfaces. Gómez-Pedrero JA; Alonso J; Canabal H; Bernabeu E Ophthalmic Physiol Opt; 1998 Nov; 18(6):514-20. PubMed ID: 10070546 [TBL] [Abstract][Full Text] [Related]
8. Torsional analogue of Prentice's equation and torsional prismatic effect in astigmatic lenses. Harris WF Ophthalmic Physiol Opt; 1990 Apr; 10(2):203-4. PubMed ID: 2371067 [No Abstract] [Full Text] [Related]
9. Estimation of dioptric power from measurements of meridional power and curvature, sagitta, lens thickness, and prismatic effect. Harris WF Optom Vis Sci; 1992 Aug; 69(8):629-38. PubMed ID: 1513559 [TBL] [Abstract][Full Text] [Related]
10. Ray vector fields, prentice's equation, and spherocylindrical lenses. Harris WF Optom Vis Sci; 1997 Feb; 74(2):120-1. PubMed ID: 9097330 [No Abstract] [Full Text] [Related]
11. Ray vector fields, prentice's equation, and Fourier representation of spherocylindrical lenses. Lakshminarayanan V; Varadharajan S Optom Vis Sci; 1996 Jul; 73(7):499-505. PubMed ID: 8843131 [TBL] [Abstract][Full Text] [Related]
12. Determining exact prismatic deviations in spectacle corrections. Remole A Optom Vis Sci; 1999 Nov; 76(11):783-95. PubMed ID: 10566863 [TBL] [Abstract][Full Text] [Related]
13. The generalized Prentice equation and the matrix equation for lens thickness solved simultaneously for dioptric power. Harris WF Optom Vis Sci; 1991 Nov; 68(11):873-6. PubMed ID: 1766649 [TBL] [Abstract][Full Text] [Related]
14. New equations for determining ocular deviations produced by spectacle corrections. Remole A Optom Vis Sci; 2000 Oct; 77(10):555-63. PubMed ID: 11100894 [TBL] [Abstract][Full Text] [Related]
15. Lens effectivity in terms of dioptric power matrices. Keating MP Am J Optom Physiol Opt; 1981 Dec; 58(12):1154-60. PubMed ID: 7325207 [TBL] [Abstract][Full Text] [Related]
16. An easier method to obtain the sphere, cylinder, and axis from an off-axis dioptric power matrix. Keating MP Am J Optom Physiol Opt; 1980 Oct; 57(10):734-7. PubMed ID: 7446684 [TBL] [Abstract][Full Text] [Related]
17. Local dioptric power matrix in a progressive addition lens. Alonso J; Gómez-Pedrero JA; Bernabeu E Ophthalmic Physiol Opt; 1997 Nov; 17(6):522-9. PubMed ID: 9666927 [TBL] [Abstract][Full Text] [Related]
18. Dioptric power: its nature and its representation in three- and four-dimensional space. Harris WF Optom Vis Sci; 1997 Jun; 74(6):349-66. PubMed ID: 9255813 [TBL] [Abstract][Full Text] [Related]
19. A new method for determining prismatic effects in cylindrical spectacle corrections. Remole A Optom Vis Sci; 2000 Apr; 77(4):211-20. PubMed ID: 10795805 [TBL] [Abstract][Full Text] [Related]
20. Interconverting the matrix and principal-meridional representations of dioptric power and reduced vergence. Harris WF Ophthalmic Physiol Opt; 2000 Nov; 20(6):494-500. PubMed ID: 11185886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]