These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Aerodynamic efficiency of flapping flight: analysis of a two-stroke model. Wang ZJ J Exp Biol; 2008 Jan; 211(Pt 2):234-8. PubMed ID: 18165251 [TBL] [Abstract][Full Text] [Related]
26. The effect of advance ratio on the aerodynamics of revolving wings. Dickson WB; Dickinson MH J Exp Biol; 2004 Nov; 207(Pt 24):4269-81. PubMed ID: 15531648 [TBL] [Abstract][Full Text] [Related]
28. Flexible clap and fling in tiny insect flight. Miller LA; Peskin CS J Exp Biol; 2009 Oct; 212(19):3076-90. PubMed ID: 19749100 [TBL] [Abstract][Full Text] [Related]
29. Dynamic flight stability of a hovering bumblebee. Sun M; Xiong Y J Exp Biol; 2005 Feb; 208(Pt 3):447-59. PubMed ID: 15671333 [TBL] [Abstract][Full Text] [Related]
30. Turning behaviour depends on frictional damping in the fruit fly Drosophila. Hesselberg T; Lehmann FO J Exp Biol; 2007 Dec; 210(Pt 24):4319-34. PubMed ID: 18055621 [TBL] [Abstract][Full Text] [Related]
31. Induced airflow in flying insects I. A theoretical model of the induced flow. Sane SP J Exp Biol; 2006 Jan; 209(Pt 1):32-42. PubMed ID: 16354776 [TBL] [Abstract][Full Text] [Related]
32. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. Wang JK; Sun M J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955 [TBL] [Abstract][Full Text] [Related]
33. Rotational accelerations stabilize leading edge vortices on revolving fly wings. Lentink D; Dickinson MH J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415 [TBL] [Abstract][Full Text] [Related]
34. Dynamic flight stability of a hovering model dragonfly. Liang B; Sun M J Theor Biol; 2014 May; 348():100-12. PubMed ID: 24486234 [TBL] [Abstract][Full Text] [Related]
35. Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter. Usherwood JR Bioinspir Biomim; 2009 Mar; 4(1):015003. PubMed ID: 19258692 [TBL] [Abstract][Full Text] [Related]
36. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology. Frazier MR; Harrison JF; Kirkton SD; Roberts SP J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301 [TBL] [Abstract][Full Text] [Related]
37. Direct measurements of the kinematics and dynamics of bat flight. Tian X; Iriarte-Diaz J; Middleton K; Galvao R; Israeli E; Roemer A; Sullivan A; Song A; Swartz S; Breuer K Bioinspir Biomim; 2006 Dec; 1(4):S10-8. PubMed ID: 17671313 [TBL] [Abstract][Full Text] [Related]
38. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Maybury WJ; Lehmann FO J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564 [TBL] [Abstract][Full Text] [Related]
39. Theoretical study on two-dimensional aerodynamic characteristics of unsteady wings. Azuma A; Okamoto M J Theor Biol; 2005 May; 234(1):67-78. PubMed ID: 15721036 [TBL] [Abstract][Full Text] [Related]
40. A two-dimensional aerodynamic model of freely flying insects. Iima M J Theor Biol; 2007 Aug; 247(4):657-71. PubMed ID: 17482214 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]