These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 20470887)

  • 21. Sirolimus damages podocytes in rats with protein overload nephropathy.
    Cai Y; Chen Y; Zheng S; Chen B; Yang Y; Xia P
    J Nephrol; 2011; 24(3):307-12. PubMed ID: 20954132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential role of proliferation signal inhibitors on atherosclerosis in renal transplant patients.
    Andrés V; Castro C; Campistol JM
    Nephrol Dial Transplant; 2006 Jul; 21 Suppl 3():iii14-7. PubMed ID: 16815851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Both subtype 1 and 2 receptors of angiotensin II participate in regulation of intracellular calcium in glomerular epithelial cells.
    Sharma R; Sharma M; Vamos S; Savin VJ; Wiegmann TB
    J Lab Clin Med; 2001 Jul; 138(1):40-9. PubMed ID: 11433227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A potential mechanism for proximal tubule angiotensin II-mediated sodium flux associated with receptor-mediated endocytosis and arachidonic acid release.
    Becker BN; Harris RC
    Kidney Int Suppl; 1996 Dec; 57():S66-72. PubMed ID: 8941925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Albumin transport and processing by the proximal tubule: physiology and pathophysiology.
    Pollock CA; Poronnik P
    Curr Opin Nephrol Hypertens; 2007 Jul; 16(4):359-64. PubMed ID: 17565279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential regulation of Toll-like receptor 4 gene expression in renal cells by angiotensin II: dependency on AP1 and PU.1 transcriptional sites.
    Bondeva T; Roger T; Wolf G
    Am J Nephrol; 2007; 27(3):308-14. PubMed ID: 17495427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lithium ameliorates tubule-interstitial injury through activation of the mTORC2/protein kinase B pathway.
    Teixeira DE; Peruchetti DB; Silva LS; Silva-Aguiar RP; Oquendo MB; Silva-Filho JL; Takiya CM; Leal-Cardoso JH; Pinheiro AAS; Caruso-Neves C
    PLoS One; 2019; 14(4):e0215871. PubMed ID: 31002704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Possible involvement of intracellular angiotensin II receptor in high-glucose-induced damage in renal proximal tubular cells.
    Takao T; Horino T; Kagawa T; Matsumoto R; Shimamura Y; Ogata K; Inoue K; Taniguchi Y; Taguchi T; Morita T; Terada Y
    J Nephrol; 2011; 24(2):218-24. PubMed ID: 20890878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein translocation as a tool: The current rapamycin story.
    Putyrski M; Schultz C
    FEBS Lett; 2012 Jul; 586(15):2097-105. PubMed ID: 22584056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapamycin: a therapy of choice for endoplasmic reticulum stress-induced renal proximal tubule toxicity?
    Thévenod F; Lee WK; Wolff NA
    Toxicology; 2015 Apr; 330():41-3. PubMed ID: 25668123
    [No Abstract]   [Full Text] [Related]  

  • 31. Zeroing in on the albumin glomerular sieving coefficient.
    Haraldsson B; Tanner GA
    Am J Physiol Renal Physiol; 2014 Mar; 306(6):F577-8. PubMed ID: 24370593
    [No Abstract]   [Full Text] [Related]  

  • 32. Using 'bumps' and 'holes' to control protein activity.
    Evanko D
    Nat Methods; 2006 Mar; 3(3):154-5. PubMed ID: 16523567
    [No Abstract]   [Full Text] [Related]  

  • 33. Rapamycin treatment induces tubular proteinuria: role of megalin-mediated protein reabsorption.
    Peres RAS; Peruchetti DB; Silva-Aguiar RP; Teixeira DE; Gomes CP; Takiya CM; Pinheiro AAS; Caruso-Neves C
    Front Pharmacol; 2023; 14():1194816. PubMed ID: 37484026
    [No Abstract]   [Full Text] [Related]  

  • 34. The case for the therapeutic use of mechanistic/mammalian target of rapamycin (mTOR) inhibitors in xenotransplantation.
    Maenaka A; Kinoshita K; Hara H; Cooper DKC
    Xenotransplantation; 2023; 30(3):e12802. PubMed ID: 37029499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RAAS inhibitors directly reduce diabetes-induced renal fibrosis via growth factor inhibition.
    Koszegi S; Molnar A; Lenart L; Hodrea J; Balogh DB; Lakat T; Szkibinszkij E; Hosszu A; Sparding N; Genovese F; Wagner L; Vannay A; Szabo AJ; Fekete A
    J Physiol; 2019 Jan; 597(1):193-209. PubMed ID: 30324679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insulin Resistance in Kidney Disease: Is There a Distinct Role Separate from That of Diabetes or Obesity?
    Whaley-Connell A; Sowers JR
    Cardiorenal Med; 2017 Dec; 8(1):41-49. PubMed ID: 29344025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. mTOR Regulates Endocytosis and Nutrient Transport in Proximal Tubular Cells.
    Grahammer F; Ramakrishnan SK; Rinschen MM; Larionov AA; Syed M; Khatib H; Roerden M; Sass JO; Helmstaedter M; Osenberg D; Kühne L; Kretz O; Wanner N; Jouret F; Benzing T; Artunc F; Huber TB; Theilig F
    J Am Soc Nephrol; 2017 Jan; 28(1):230-241. PubMed ID: 27297946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Renal Toxicities of Targeted Therapies.
    Abbas A; Mirza MM; Ganti AK; Tendulkar K
    Target Oncol; 2015 Dec; 10(4):487-99. PubMed ID: 25922090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Renal effects of targeted anticancer therapies.
    Porta C; Cosmai L; Gallieni M; Pedrazzoli P; Malberti F
    Nat Rev Nephrol; 2015 Jun; 11(6):354-70. PubMed ID: 25734768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Everolimus-based calcineurin-inhibitor sparing regimens for kidney transplant recipients: a systematic review and meta-analysis.
    Su L; Tam N; Deng R; Chen P; Li H; Wu L
    Int Urol Nephrol; 2014 Oct; 46(10):2035-44. PubMed ID: 25027805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.