BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 20471172)

  • 21. Use of Monte Carlo modeling to aid interpretation and quantification of the low energy-loss electron yield at low primary energies.
    Bonet C; Pratt A; El-Gomati MM; Matthew JA; Tear SP
    Microsc Microanal; 2008 Oct; 14(5):439-50. PubMed ID: 18793488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scanning electron microscopy of hepatic ultrastructure: secondary, backscattered, and transmitted electron imaging.
    Miyai K; Abraham JL; Linthicum DS; Wagner RM
    Lab Invest; 1976 Oct; 35(4):369-76. PubMed ID: 979166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaling dopant states in a semiconducting nanostructure by chemically resolved electron energy-loss spectroscopy: a case study on Co-doped ZnO.
    Wang X; Song F; Chen Q; Wang T; Wang J; Liu P; Shen M; Wan J; Wang G; Xu JB
    J Am Chem Soc; 2010 May; 132(18):6492-7. PubMed ID: 20405827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Method for Cross-sectional Thin Specimen Preparation from a Specific Site Using a Combination of a Focused Ion Beam System and Intermediate Voltage Electron Microscope and Its Application to the Characterization of a Precipitate in a Steel.
    Yaguchi T; Matsumoto H; Kamino T; Ishitani T; Urao R
    Microsc Microanal; 2001 May; 7(3):287-291. PubMed ID: 12597819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beam voltage effects in the study of embedded biological materials by secondary electron detectors.
    Scala C; Pasquinelli G; Preda P; Laschi R
    Scan Electron Microsc; 1986; (Pt 3):987-98. PubMed ID: 3541162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-energy STEM of multilayers and dopant profiles.
    Merli PG; Morandi V
    Microsc Microanal; 2005 Feb; 11(1):97-104. PubMed ID: 15683576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thick-section histometry of porous hydroxyapatite implants using backscattered electron imaging.
    Holmes RE; Hagler HK; Coletta CA
    J Biomed Mater Res; 1987 Jun; 21(6):731-9. PubMed ID: 3597462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient analysis of gaseous electron-ion recombination in the environmental scanning electron microscope.
    Morgan SW; Phillips MR
    J Microsc; 2006 Mar; 221(Pt 3):183-202. PubMed ID: 16551280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dopant profiling based on scanning electron and helium ion microscopy.
    Chee AKW; Boden SA
    Ultramicroscopy; 2016 Feb; 161():51-58. PubMed ID: 26624515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Voltage and Dopant Concentration Measurements of Semiconductors using a Band-Pass Toroidal Energy Analyzer Inside a Scanning Electron Microscope.
    Srinivasan A; Khursheed A
    Microsc Microanal; 2015 Aug; 21(4):910-8. PubMed ID: 26223549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contamination-free transmission electron microscopy for high-resolution carbon elemental mapping of polymers.
    Horiuchi S; Hanada T; Ebisawa M; Matsuda Y; Kobayashi M; Takahara A
    ACS Nano; 2009 May; 3(5):1297-304. PubMed ID: 19402650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Confocal laser scanning microscopy coupled to a spectrofluorometric detector as a rapid tool for determining the in vivo effect of metals on phototrophic bacteria.
    Burnat M; Diestra E; Esteve I; Solé A
    Bull Environ Contam Toxicol; 2010 Jan; 84(1):55-60. PubMed ID: 19936996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compositional contrast of uncoated fungal spores and stained section-face by low-loss backscattered electron imaging.
    Kim KW; Jaksch H
    Micron; 2009 Oct; 40(7):724-9. PubMed ID: 19487128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution spin-polarized scanning electron microscopy (spin SEM).
    Kohashi T; Konoto M; Koike K
    J Electron Microsc (Tokyo); 2010; 59(1):43-52. PubMed ID: 19840986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy.
    Gu L; Sigle W; Koch CT; Nelayah J; Srot V; van Aken PA
    Ultramicroscopy; 2009 Aug; 109(9):1164-70. PubMed ID: 19525066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redesign of the scanning electron microscope for parallel energy spectral acquisition.
    Khursheed A; Hoang HQ
    Ultramicroscopy; 2008 Jan; 108(2):151-7. PubMed ID: 17499926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observation on backscattered electron image (BEI) of a scanning electron microscope (SEM) in semi-thin sections prepared for light microscopy.
    Nagato Y; Kushida T; Kushida H; Ogura K
    Tokai J Exp Clin Med; 1983 May; 8(2):167-74. PubMed ID: 6419405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On Low Voltage Scanning Electron Microscopy and Chemical Microanalysis.
    Boyes ED
    Microsc Microanal; 2000 Jul; 6(4):307-316. PubMed ID: 10898813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monte Carlo feasibility study of orthogonal bremsstrahlung beams for improved radiation therapy imaging.
    Jabbari K; Sarfehnia A; Podgorsak EB; Seuntjens JP
    Phys Med Biol; 2007 Feb; 52(4):1171-84. PubMed ID: 17264378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.