BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20471381)

  • 1. Induction of filopodia-like protrusions by transmembrane agrin: role of agrin glycosaminoglycan chains and Rho-family GTPases.
    Lin L; McCroskery S; Ross JM; Chak Y; Neuhuber B; Daniels MP
    Exp Cell Res; 2010 Aug; 316(14):2260-77. PubMed ID: 20471381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane agrin regulates filopodia in rat hippocampal neurons in culture.
    McCroskery S; Chaudhry A; Lin L; Daniels MP
    Mol Cell Neurosci; 2006 Sep; 33(1):15-28. PubMed ID: 16860570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane agrin regulates dendritic filopodia and synapse formation in mature hippocampal neuron cultures.
    McCroskery S; Bailey A; Lin L; Daniels MP
    Neuroscience; 2009 Sep; 163(1):168-79. PubMed ID: 19524020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The process-inducing activity of transmembrane agrin requires follistatin-like domains.
    Porten E; Seliger B; Schneider VA; Wöll S; Stangel D; Ramseger R; Kröger S
    J Biol Chem; 2010 Jan; 285(5):3114-25. PubMed ID: 19940118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosaminoglycan-dependent and -independent inhibition of neurite outgrowth by agrin.
    Baerwald-de la Torre K; Winzen U; Halfter W; Bixby JL
    J Neurochem; 2004 Jul; 90(1):50-61. PubMed ID: 15198666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recruitment of Dbl by ezrin and dystroglycan drives membrane proximal Cdc42 activation and filopodia formation.
    Batchelor CL; Higginson JR; Chen YJ; Vanni C; Eva A; Winder SJ
    Cell Cycle; 2007 Feb; 6(3):353-63. PubMed ID: 17297291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering transmembrane-agrin induces filopodia-like processes on axons and dendrites.
    Annies M; Bittcher G; Ramseger R; Löschinger J; Wöll S; Porten E; Abraham C; Rüegg MA; Kröger S
    Mol Cell Neurosci; 2006 Mar; 31(3):515-24. PubMed ID: 16364653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane form agrin-induced process formation requires lipid rafts and the activation of Fyn and MAPK.
    Ramseger R; White R; Kröger S
    J Biol Chem; 2009 Mar; 284(12):7697-705. PubMed ID: 19139104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zymogen activation of neurotrypsin and neurotrypsin-dependent agrin cleavage on the cell surface are enhanced by glycosaminoglycans.
    Gisler C; Lüscher D; Schätzle P; Dürr S; Baici A; Galliciotti G; Reif R; Bolliger MF; Kunz B; Sonderegger P
    Biochem J; 2013 Jul; 453(1):83-100. PubMed ID: 23560819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DEF6, a novel PH-DH-like domain protein, is an upstream activator of the Rho GTPases Rac1, Cdc42, and RhoA.
    Mavrakis KJ; McKinlay KJ; Jones P; Sablitzky F
    Exp Cell Res; 2004 Apr; 294(2):335-44. PubMed ID: 15023524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of extracellular matrix ligands for the heparan sulfate proteoglycan agrin.
    Cotman SL; Halfter W; Cole GJ
    Exp Cell Res; 1999 May; 249(1):54-64. PubMed ID: 10328953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Rho family GTPase Rif induces filopodia through mDia2.
    Pellegrin S; Mellor H
    Curr Biol; 2005 Jan; 15(2):129-33. PubMed ID: 15668168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteoglycan serglycin promotes non-small cell lung cancer cell migration through the interaction of its glycosaminoglycans with CD44.
    Guo JY; Chiu CH; Wang MJ; Li FA; Chen JY
    J Biomed Sci; 2020 Jan; 27(1):2. PubMed ID: 31898491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced glycosaminoglycan sulfation diminishes the agrin signal transduction pathway.
    McDonnell KM; Grow WA
    Dev Neurosci; 2004; 26(1):1-10. PubMed ID: 15509893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-talk between Rac1 and Cdc42 GTPases regulates formation of filopodia required for dengue virus type-2 entry into HMEC-1 cells.
    Zamudio-Meza H; Castillo-Alvarez A; González-Bonilla C; Meza I
    J Gen Virol; 2009 Dec; 90(Pt 12):2902-2911. PubMed ID: 19710257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative Splicing and the Intracellular Domain Mediate TM-agrin's Ability to Differentially Regulate the Density of Excitatory and Inhibitory Synapse-like Specializations in Developing CNS Neurons.
    Handara G; Kröger S
    Neuroscience; 2019 Nov; 419():60-71. PubMed ID: 31672640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agrin-induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42.
    Weston C; Yee B; Hod E; Prives J
    J Cell Biol; 2000 Jul; 150(1):205-12. PubMed ID: 10893268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agrin is a chimeric proteoglycan with the attachment sites for heparan sulfate/chondroitin sulfate located in two multiple serine-glycine clusters.
    Winzen U; Cole GJ; Halfter W
    J Biol Chem; 2003 Aug; 278(32):30106-14. PubMed ID: 12773545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The novel Rho-family GTPase rif regulates coordinated actin-based membrane rearrangements.
    Ellis S; Mellor H
    Curr Biol; 2000 Nov; 10(21):1387-90. PubMed ID: 11084341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrin is a major heparan sulfate proteoglycan accumulating in Alzheimer's disease brain.
    Verbeek MM; Otte-Höller I; van den Born J; van den Heuvel LP; David G; Wesseling P; de Waal RM
    Am J Pathol; 1999 Dec; 155(6):2115-25. PubMed ID: 10595940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.