BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20471473)

  • 1. Galpha16 interacts with Class IA phosphatidylinositol 3-kinases and inhibits Akt signaling.
    Yeung WW; Wong YH
    Cell Signal; 2010 Sep; 22(9):1379-87. PubMed ID: 20471473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional activation of c-Fos by constitutively active Galpha(16)QL through a STAT1-dependent pathway.
    Lo RK; Wong YH
    Cell Signal; 2006 Dec; 18(12):2143-53. PubMed ID: 16781847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prostacyclin receptor-induced STAT3 phosphorylation in human erythroleukemia cells is mediated via Galpha(s) and Galpha(16) hybrid signaling.
    Lo RK; Liu AM; Wise H; Wong YH
    Cell Signal; 2008 Nov; 20(11):2095-106. PubMed ID: 18755267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of Ras-dependent signaling pathways by G(14) -coupled receptors requires the adaptor protein TPR1.
    Kwan DH; Yung LY; Ye RD; Wong YH
    J Cell Biochem; 2012 Nov; 113(11):3486-97. PubMed ID: 22711498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The RhoA-specific guanine nucleotide exchange factor p63RhoGEF binds to activated Galpha(16) and inhibits the canonical phospholipase Cbeta pathway.
    Yeung WW; Wong YH
    Cell Signal; 2009 Aug; 21(8):1317-25. PubMed ID: 19332116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PI3-kinase p110α mediates β1 integrin-induced Akt activation and membrane protrusion during cell attachment and initial spreading.
    Zeller KS; Idevall-Hagren O; Stefansson A; Velling T; Jackson SP; Downward J; Tengholm A; Johansson S
    Cell Signal; 2010 Dec; 22(12):1838-48. PubMed ID: 20667469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Galphaq binds to p110alpha/p85alpha phosphoinositide 3-kinase and displaces Ras.
    Ballou LM; Chattopadhyay M; Li Y; Scarlata S; Lin RZ
    Biochem J; 2006 Mar; 394(Pt 3):557-62. PubMed ID: 16268778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gq-coupled purinergic receptors inhibit insulin-like growth factor-I/phosphoinositide 3-kinase pathway-dependent keratinocyte migration.
    Taboubi S; Garrouste F; Parat F; Pommier G; Faure E; Monferran S; Kovacic H; Lehmann M
    Mol Biol Cell; 2010 Mar; 21(6):946-55. PubMed ID: 20089844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutively active alpha subunits of G(q/11) and G(12/13) families inhibit activation of the pro-survival Akt signaling cascade.
    Wu EH; Tam BH; Wong YH
    FEBS J; 2006 Jun; 273(11):2388-98. PubMed ID: 16704413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of hematopoietic-specific G-protein Galpha15 and Galpha16 by protein kinase C.
    Gu JL; Lu W; Xia C; Wu X; Liu M
    J Cell Biochem; 2003 Apr; 88(6):1101-11. PubMed ID: 12647293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LARG links histamine-H1-receptor-activated Gq to Rho-GTPase-dependent signaling pathways.
    Pfreimer M; Vatter P; Langer T; Wieland T; Gierschik P; Moepps B
    Cell Signal; 2012 Mar; 24(3):652-63. PubMed ID: 22100544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of growth factor receptor transactivation in high glucose-induced increased levels of Gq/11alpha and signaling in vascular smooth muscle cells.
    Descorbeth M; Anand-Srivastava MB
    J Mol Cell Cardiol; 2010 Aug; 49(2):221-33. PubMed ID: 20036247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in the catalytic subunit of class IA PI3K confer leukemogenic potential to hematopoietic cells.
    Horn S; Bergholz U; Jücker M; McCubrey JA; Trümper L; Stocking C; Bäsecke J
    Oncogene; 2008 Jul; 27(29):4096-106. PubMed ID: 18317450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel site within G protein alpha subunits important for specificity of receptor-G protein interaction.
    Heydorn A; Ward RJ; Jorgensen R; Rosenkilde MM; Frimurer TM; Milligan G; Kostenis E
    Mol Pharmacol; 2004 Aug; 66(2):250-9. PubMed ID: 15266015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidic acid regulates signal output by G protein coupled receptors through direct interaction with phospholipase C-beta(1).
    Litosch I; Pujari R; Lee SJ
    Cell Signal; 2009 Sep; 21(9):1379-84. PubMed ID: 19414067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galpha16 activates Ras by forming a complex with tetratricopeptide repeat 1 (TPR1) and Son of Sevenless (SOS).
    Liu AM; Lo RK; Lee MM; Wang Y; Yeung WW; Ho MK; Su Y; Ye RD; Wong YH
    Cell Signal; 2010 Oct; 22(10):1448-58. PubMed ID: 20639119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling.
    Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB
    Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pertussis toxin-sensitive Gi/o proteins are involved in nerve growth factor-induced pro-survival Akt signaling cascade in PC12 cells.
    Wu EH; Wong YH
    Cell Signal; 2005 Jul; 17(7):881-90. PubMed ID: 15763430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pasteurella multocida toxin activates Gbetagamma dimers of heterotrimeric G proteins.
    Preuss I; Kurig B; Nürnberg B; Orth JH; Aktories K
    Cell Signal; 2009 Apr; 21(4):551-8. PubMed ID: 19135527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteasome involvement in the degradation of the G(q) family of Galpha subunits.
    Johansson BB; Minsaas L; Aragay AM
    FEBS J; 2005 Oct; 272(20):5365-77. PubMed ID: 16218966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.