These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 20471488)

  • 1. Energetic modelling: a comparison of the different approaches used in seabirds.
    Fort J; Porter WP; Grémillet D
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Mar; 158(3):358-65. PubMed ID: 20471488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic modelling predicts energetic bottleneck for seabirds wintering in the northwest Atlantic.
    Fort J; Porter WP; Grémillet D
    J Exp Biol; 2009 Aug; 212(Pt 15):2483-90. PubMed ID: 19617442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of seabird energetics using the doubly labeled water method.
    Shaffer SA
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Mar; 158(3):315-22. PubMed ID: 20656049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds.
    Masden EA; Haydon DT; Fox AD; Furness RW
    Mar Pollut Bull; 2010 Jul; 60(7):1085-91. PubMed ID: 20188382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring energy expenditure in birds using bolus injections of 13C-labelled Na-bicarbonate.
    Hambly C; Voigt CC
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Mar; 158(3):323-8. PubMed ID: 20510385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant.
    Wilson RP; White CR; Quintana F; Halsey LG; Liebsch N; Martin GR; Butler PJ
    J Anim Ecol; 2006 Sep; 75(5):1081-90. PubMed ID: 16922843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic power of European starlings Sturnus vulgaris during flight in a wind tunnel, estimated from heat transfer modelling, doubly labelled water and mask respirometry.
    Ward S; Möller U; Rayner JM; Jackson DM; Nachtigall W; Speakman JR
    J Exp Biol; 2004 Nov; 207(Pt 24):4291-8. PubMed ID: 15531650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of different approaches for the calculation of energy expenditure using doubly labeled water in a small mammal.
    Speakman JR; Król E
    Physiol Biochem Zool; 2005; 78(4):650-67. PubMed ID: 15957119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the two-sample doubly labelled water method alters behaviour and affects estimates of energy expenditure in black-legged kittiwakes.
    Schultner J; Welcker J; Speakman JR; Nordøy ES; Gabrielsen GW
    J Exp Biol; 2010 Sep; 213(Pt 17):2958-66. PubMed ID: 20709924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model to estimate seabird field metabolic rates.
    Dunn RE; White CR; Green JA
    Biol Lett; 2018 Jun; 14(6):. PubMed ID: 29875209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic adjustments to increasing foraging costs of starlings in a closed economy.
    Wiersma P; Salomons HM; Verhulst S
    J Exp Biol; 2005 Nov; 208(Pt 21):4099-108. PubMed ID: 16244169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators. I. Model description and uncertainty analysis.
    Traas TP; Luttik R; Jongbloed RH
    Ecotoxicol Environ Saf; 1996 Aug; 34(3):264-78. PubMed ID: 8812195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating metabolic heat loss in birds and mammals by combining infrared thermography with biophysical modelling.
    McCafferty DJ; Gilbert C; Paterson W; Pomeroy PP; Thompson D; Currie JI; Ancel A
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Mar; 158(3):337-45. PubMed ID: 20869456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the spatial distribution of ammonia emissions from seabirds in the UK.
    Wilson LJ; Bacon PJ; Bull J; Dragosits U; Blackall TD; Dunn TE; Hamer KC; Sutton MA; Wanless S
    Environ Pollut; 2004 Sep; 131(2):173-85. PubMed ID: 15234084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the development and application of the accelerometry technique for estimating energy expenditure.
    Halsey LG; Shepard EL; Wilson RP
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Mar; 158(3):305-14. PubMed ID: 20837157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the cost of short flights in a nectarivorous and a non-nectarivorous bird.
    Hambly C; Pinshow B; Wiersma P; Verhulst S; Piertney SB; Harper EJ; Speakman JR
    J Exp Biol; 2004 Oct; 207(Pt 22):3959-68. PubMed ID: 15472026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating energy expenditure of animals using the accelerometry technique: activity, inactivity and comparison with the heart-rate technique.
    Green JA; Halsey LG; Wilson RP; Frappell PB
    J Exp Biol; 2009 Feb; 212(Pt 4):471-82. PubMed ID: 19181894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-activity budgets and energetics of Dipper Cinclus cinclus are dictated by temporal variability of river flow.
    D'Amico F; Hémery G
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Dec; 148(4):811-20. PubMed ID: 17897855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of methods for evaluating energy expenditure of incubating wandering albatrosses.
    Shaffer SA; Costa DP; Weimerskirch H
    Physiol Biochem Zool; 2001; 74(6):823-31. PubMed ID: 11731973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-dimensional animal energetic niches clarify behavioural options in a variable marine environment.
    Wilson RP; McMahon CR; Quintana F; Frere E; Scolaro A; Hays GC; Bradshaw CJ
    J Exp Biol; 2011 Feb; 214(Pt 4):646-56. PubMed ID: 21270314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.