These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20471508)

  • 21. Delineating bone's interstitial fluid pathway in vivo.
    Wang L; Ciani C; Doty SB; Fritton SP
    Bone; 2004 Mar; 34(3):499-509. PubMed ID: 15003797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ permeability measurement of the mammalian lacunar-canalicular system.
    Gardinier JD; Townend CW; Jen KP; Wu Q; Duncan RL; Wang L
    Bone; 2010 Apr; 46(4):1075-81. PubMed ID: 20080221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated solute transport at sites of diffuse matrix damage in cortical bone: Implications on bone repair.
    Wang B; Sun X; Akkus O; Wang L
    J Orthop Res; 2018 Feb; 36(2):692-698. PubMed ID: 28921632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone.
    Gatti V; Azoulay EM; Fritton SP
    J Biomech; 2018 Jan; 66():127-136. PubMed ID: 29217091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluid flow and convective transport of solutes within the intervertebral disc.
    Ferguson SJ; Ito K; Nolte LP
    J Biomech; 2004 Feb; 37(2):213-21. PubMed ID: 14706324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer model of non-Newtonian canalicular fluid flow in lacunar-canalicular system of bone tissue.
    Kumar R
    Comput Methods Biomech Biomed Engin; 2024 Feb; ():1-15. PubMed ID: 38372236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluid and Solute Transport in Bone: Flow-Induced Mechanotransduction.
    Fritton SP; Weinbaum S
    Annu Rev Fluid Mech; 2009 Jan; 41():347-374. PubMed ID: 20072666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Knee-loading modality drives molecular transport in mouse femur.
    Su M; Jiang H; Zhang P; Liu Y; Wang E; Hsu A; Yokota H
    Ann Biomed Eng; 2006 Oct; 34(10):1600-6. PubMed ID: 17029032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.
    Cowin SC; Cardoso L
    J Biomech; 2015 Mar; 48(5):842-54. PubMed ID: 25666410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative analysis of macroscopic solute transport in the murine brain.
    Ray LA; Pike M; Simon M; Iliff JJ; Heys JJ
    Fluids Barriers CNS; 2021 Dec; 18(1):55. PubMed ID: 34876169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maternal bone adaptation to mechanical loading during pregnancy, lactation, and post-weaning recovery.
    Li Y; de Bakker CMJ; Lai X; Zhao H; Parajuli A; Tseng WJ; Pei S; Meng T; Chung R; Wang L; Liu XS
    Bone; 2021 Oct; 151():116031. PubMed ID: 34098162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular and macromolecular diffusion in human meniscus: relationships with tissue structure and composition.
    Travascio F; Devaux F; Volz M; Jackson AR
    Osteoarthritis Cartilage; 2020 Mar; 28(3):375-382. PubMed ID: 31917232
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic permeability of the lacunar-canalicular system in human cortical bone.
    Benalla M; Palacio-Mancheno PE; Fritton SP; Cardoso L; Cowin SC
    Biomech Model Mechanobiol; 2014 Aug; 13(4):801-12. PubMed ID: 24146291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical simulation on mass transfer in the bone lacunar-canalicular system under different gravity fields.
    Wang H; Wang J; Lyu L; Wei S; Zhang C
    Comput Methods Biomech Biomed Engin; 2024; 27(4):478-488. PubMed ID: 36912751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones.
    Cowin SC; Gailani G; Benalla M
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3401-44. PubMed ID: 19657006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice.
    Kwon RY; Meays DR; Tang WJ; Frangos JA
    J Bone Miner Res; 2010 Aug; 25(8):1798-807. PubMed ID: 20200992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age-related changes in mouse bone permeability.
    Rodriguez-Florez N; Oyen ML; Shefelbine SJ
    J Biomech; 2014 Mar; 47(5):1110-6. PubMed ID: 24433671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation.
    Knothe Tate ML; Steck R; Forwood MR; Niederer P
    J Exp Biol; 2000 Sep; 203(Pt 18):2737-45. PubMed ID: 10952874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of vascular porosity on fluid flow and nutrient transport in loaded cortical bone.
    Goulet GC; Hamilton N; Cooper D; Coombe D; Tran D; Martinuzzi R; Zernicke RF
    J Biomech; 2008 Jul; 41(10):2169-75. PubMed ID: 18533159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solute convection in dynamically compressed cartilage.
    Evans RC; Quinn TM
    J Biomech; 2006; 39(6):1048-55. PubMed ID: 16549095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.