These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20471638)

  • 1. Enhancement of neural stochastic firing in cochlear implant stimulation by the addition of noise: a computational study of the influence of stimulation settings and spontaneous activity.
    Paglialonga A; Fiocchi S; Ravazzani P; Tognola G
    Comput Biol Med; 2010 Jun; 40(6):597-606. PubMed ID: 20471638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1389-98. PubMed ID: 17694859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
    Mino H; Rubinstein JT; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity.
    Mino H
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):360-9. PubMed ID: 17355047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1040-9. PubMed ID: 15977734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An introduction to the biophysics of the electrically evoked compound action potential.
    Rubinstein JT
    Int J Audiol; 2004 Dec; 43 Suppl 1():S3-9. PubMed ID: 15732375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):590-603. PubMed ID: 15072213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of neural refractoriness on spatio-temporal variability in spike initiations with Electrical stimulation.
    Mino H; Rubinstein JT
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):273-80. PubMed ID: 17009486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation.
    van Gendt MJ; Briaire JJ; Kalkman RK; Frijns JHM
    Hear Res; 2016 Nov; 341():130-143. PubMed ID: 27594099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of interpulse interval on stochastic properties of electrical stimulation: models and measurements.
    Matsuoka AJ; Rubinstein JT; Abbas PJ; Miller CA
    IEEE Trans Biomed Eng; 2001 Apr; 48(4):416-24. PubMed ID: 11322529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the threshold of single-pulse electrical stimuli using a stochastic auditory nerve model: the effects of noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):825-35. PubMed ID: 12848350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic population model for electrical stimulation of the auditory nerve.
    Imennov NS; Rubinstein JT
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2493-501. PubMed ID: 19304476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):87-99. PubMed ID: 19063956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type.
    Schaette R; Kempter R
    Hear Res; 2008 Jun; 240(1-2):57-72. PubMed ID: 18396381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of the auditory nerve to sinusoidal electrical stimulation: effects of high-rate pulse trains.
    Runge-Samuelson CL; Abbas PJ; Rubinstein JT; Miller CA; Robinson BK
    Hear Res; 2004 Aug; 194(1-2):1-13. PubMed ID: 15276671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive noise can enhance temporal coding in a computational model of analogue cochlear implant stimulation.
    Morse RP; Evans EF
    Hear Res; 1999 Jul; 133(1-2):107-19. PubMed ID: 10416869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vowel enhancement effects in cochlear-implant users.
    Wang N; Kreft H; Oxenham AJ
    J Acoust Soc Am; 2012 Jun; 131(6):EL421-6. PubMed ID: 22713016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach.
    Briaire JJ; Frijns JH
    Hear Res; 2006 Apr; 214(1-2):17-27. PubMed ID: 16520009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial results from a model of ephaptic excitation in the electrically excited peripheral auditory nervous system.
    Jönsson R; Hanekom T; Hanekom JJ
    Hear Res; 2008 Mar; 237(1-2):49-56. PubMed ID: 18255244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renewal-process approximation of a stochastic threshold model for electrical neural stimulation.
    Bruce IC; Irlicht LS; White MW; O'Leary SJ; Clark GM
    J Comput Neurosci; 2000; 9(2):119-32. PubMed ID: 11030517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.