These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20471638)

  • 41. Stochastic resonance in the motor system: effects of noise on the monosynaptic reflex pathway of the cat spinal cord.
    Martínez L; Pérez T; Mirasso CR; Manjarrez E
    J Neurophysiol; 2007 Jun; 97(6):4007-16. PubMed ID: 17428901
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Practical model description of peripheral neural excitation in cochlear implant recipients: 2. Spread of the effective stimulation field (ESF), from ECAP and FEA.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):100-11. PubMed ID: 19063955
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation.
    Rubinstein JT; Wilson BS; Finley CC; Abbas PJ
    Hear Res; 1999 Jan; 127(1-2):108-18. PubMed ID: 9925022
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Speech perception in individuals with auditory neuropathy.
    Zeng FG; Liu S
    J Speech Lang Hear Res; 2006 Apr; 49(2):367-80. PubMed ID: 16671850
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting auditory tone-in-noise detection performance: the effects of neural variability.
    Huettel LG; Collins LM
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):282-93. PubMed ID: 14765701
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of stimulation on the input parameters of stochastic leaky integrate-and-fire neuronal model.
    Lansky P; Sanda P; He J
    J Physiol Paris; 2010; 104(3-4):160-6. PubMed ID: 19944155
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A computer model of medial efferent suppression in the mammalian auditory system.
    Ferry RT; Meddis R
    J Acoust Soc Am; 2007 Dec; 122(6):3519-26. PubMed ID: 18247760
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessing the Firing Properties of the Electrically Stimulated Auditory Nerve Using a Convolution Model.
    Strahl SB; Ramekers D; Nagelkerke MMB; Schwarz KE; Spitzer P; Klis SFL; Grolman W; Versnel H
    Adv Exp Med Biol; 2016; 894():143-153. PubMed ID: 27080655
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New temporal coding scheme for auditory nerve stimulation.
    Irlicht L; Au D; Clark GM
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():358-60. PubMed ID: 7668705
    [No Abstract]   [Full Text] [Related]  

  • 51. Effects of the rates of pseudo-spontaneous spikes generated by electric stimuli on information transmission in an auditory nerve fiber model.
    Kumsa P; Mino H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5246-9. PubMed ID: 24110919
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Encoding and decoding amplitude-modulated cochlear implant stimuli--a point process analysis.
    Goldwyn JH; Shea-Brown E; Rubinstein JT
    J Comput Neurosci; 2010 Jun; 28(3):405-24. PubMed ID: 20177761
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stochastic model shows how cochlear implants process azimuth in real auditory space.
    Drapal M; Marsalek P
    Chin J Physiol; 2010 Dec; 53(6):439-46. PubMed ID: 21793356
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced coding in a cochlear-implant model using additive noise: aperiodic stochastic resonance with tuning.
    Morse RP; Roper P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5 Pt B):5683-92. PubMed ID: 11031627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biophysics-inspired spike rate adaptation for computationally efficient phenomenological nerve modeling.
    de Nobel J; Martens SSM; Briaire JJ; Bäck THW; Kononova AV; Frijns JHM
    Hear Res; 2024 Jun; 447():109011. PubMed ID: 38692015
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic encoding of amplitude-modulated sounds at the level of auditory nerve fibers.
    Rimskaya-Korsakova LK; Telepnev VN; Dubrovksii NA
    Neurosci Behav Physiol; 2005 Jan; 35(1):71-81. PubMed ID: 15739790
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The spontaneous-rate histogram of the auditory nerve can be explained by only two or three spontaneous rates and long-range dependence.
    Jackson BS; Carney LH
    J Assoc Res Otolaryngol; 2005 Jun; 6(2):148-59. PubMed ID: 15952051
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of I(h) and I(KLT) on the response of the auditory nerve to electrical stimulation in a stochastic Hodgkin-Huxley model.
    Negm MH; Bruce IC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5539-42. PubMed ID: 19163972
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancement of vowel coding for cochlear implants by addition of noise.
    Morse RP; Evans EF
    Nat Med; 1996 Aug; 2(8):928-32. PubMed ID: 8705865
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preferential and non-preferential transmission of formant information by an analogue cochlear implant using noise: the role of the nerve threshold.
    Morse RP; Evans EF
    Hear Res; 1999 Jul; 133(1-2):120-32. PubMed ID: 10416870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.