BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20471956)

  • 1. Phosphorylation of p300 by ATM controls the stability of NBS1.
    Jang ER; Choi JD; Jeong G; Lee JS
    Biochem Biophys Res Commun; 2010 Jul; 397(4):637-43. PubMed ID: 20471956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetyltransferase p300 regulates NBS1-mediated DNA damage response.
    Jang ER; Choi JD; Lee JS
    FEBS Lett; 2011 Jan; 585(1):47-52. PubMed ID: 21108945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage.
    Bahassi el M; Myer DL; McKenney RJ; Hennigan RF; Stambrook PJ
    Mutat Res; 2006 Apr; 596(1-2):166-76. PubMed ID: 16481012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATMIN defines an NBS1-independent pathway of ATM signalling.
    Kanu N; Behrens A
    EMBO J; 2007 Jun; 26(12):2933-41. PubMed ID: 17525732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia-induced phosphorylation of Chk2 in an ataxia telangiectasia mutated-dependent manner.
    Gibson SL; Bindra RS; Glazer PM
    Cancer Res; 2005 Dec; 65(23):10734-41. PubMed ID: 16322218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive phosphorylation of ATM in lymphoblastoid cell lines from patients with ICF syndrome without downstream kinase activity.
    Goldstine JV; Nahas S; Gamo K; Gartler SM; Hansen RS; Roelfsema JH; Gatti RA; Marahrens Y
    DNA Repair (Amst); 2006 Apr; 5(4):432-43. PubMed ID: 16426903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression.
    Kang J; Ferguson D; Song H; Bassing C; Eckersdorff M; Alt FW; Xu Y
    Mol Cell Biol; 2005 Jan; 25(2):661-70. PubMed ID: 15632067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ATM-dependent DNA damage signaling pathway.
    Kitagawa R; Kastan MB
    Cold Spring Harb Symp Quant Biol; 2005; 70():99-109. PubMed ID: 16869743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response.
    Wu X; Ranganathan V; Weisman DS; Heine WF; Ciccone DN; O'Neill TB; Crick KE; Pierce KA; Lane WS; Rathbun G; Livingston DM; Weaver DT
    Nature; 2000 May; 405(6785):477-82. PubMed ID: 10839545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation.
    Horejsí Z; Falck J; Bakkenist CJ; Kastan MB; Lukas J; Bartek J
    Oncogene; 2004 Apr; 23(17):3122-7. PubMed ID: 15048089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway.
    Lim DS; Kim ST; Xu B; Maser RS; Lin J; Petrini JH; Kastan MB
    Nature; 2000 Apr; 404(6778):613-7. PubMed ID: 10766245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of Sp1 in response to DNA damage by ataxia telangiectasia-mutated kinase.
    Olofsson BA; Kelly CM; Kim J; Hornsby SM; Azizkhan-Clifford J
    Mol Cancer Res; 2007 Dec; 5(12):1319-30. PubMed ID: 18171990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis.
    Powers JT; Hong S; Mayhew CN; Rogers PM; Knudsen ES; Johnson DG
    Mol Cancer Res; 2004 Apr; 2(4):203-14. PubMed ID: 15140942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of p32 as a novel substrate for ATM in heart.
    Kato H; Takashima S; Asano Y; Shintani Y; Yamazaki S; Seguchi O; Yamamoto H; Nakano A; Higo S; Ogai A; Minamino T; Kitakaze M; Hori M
    Biochem Biophys Res Commun; 2008 Feb; 366(4):885-91. PubMed ID: 18070599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Point mutation at the Nbs1 Threonine 278 site does not affect mouse development, but compromises the Chk2 and Smc1 phosphorylation after DNA damage.
    Li T; Wang ZQ
    Mech Ageing Dev; 2011 Aug; 132(8-9):382-8. PubMed ID: 21664921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATM activation by a sulfhydryl-reactive inflammatory cyclopentenone prostaglandin.
    Kobayashi M; Ono H; Mihara K; Tauchi H; Komatsu K; Shibata T; Shimizu H; Uchida K; Yamamoto K
    Genes Cells; 2006 Jul; 11(7):779-89. PubMed ID: 16824197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NBS1 prevents chromatid-type aberrations through ATM-dependent interactions with SMC1.
    Antoccia A; Sakamoto S; Matsuura S; Tauchi H; Komatsu K
    Radiat Res; 2008 Sep; 170(3):345-52. PubMed ID: 18763866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling.
    Biton S; Ashkenazi A
    Cell; 2011 Apr; 145(1):92-103. PubMed ID: 21458669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HMGA1 protein is a novel target of the ATM kinase.
    Pentimalli F; Palmieri D; Pacelli R; Garbi C; Cesari R; Martin E; Pierantoni GM; Chieffi P; Croce CM; Costanzo V; Fedele M; Fusco A
    Eur J Cancer; 2008 Nov; 44(17):2668-79. PubMed ID: 18783938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals.
    Lou Z; Minter-Dykhouse K; Franco S; Gostissa M; Rivera MA; Celeste A; Manis JP; van Deursen J; Nussenzweig A; Paull TT; Alt FW; Chen J
    Mol Cell; 2006 Jan; 21(2):187-200. PubMed ID: 16427009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.