BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 20472486)

  • 1. The genetic basis of hyperuricaemia and gout.
    Merriman TR; Dalbeth N
    Joint Bone Spine; 2011 Jan; 78(1):35-40. PubMed ID: 20472486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genetics of hyperuricaemia and gout.
    Reginato AM; Mount DB; Yang I; Choi HK
    Nat Rev Rheumatol; 2012 Oct; 8(10):610-21. PubMed ID: 22945592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trans-ancestral dissection of urate- and gout-associated major loci SLC2A9 and ABCG2 reveals primate-specific regulatory effects.
    Takei R; Cadzow M; Markie D; Bixley M; Phipps-Green A; Major TJ; Li C; Choi HK; Li Z; Hu H; ; Guo H; He M; Shi Y; Stamp LK; Dalbeth N; Merriman TR; Wei WH
    J Hum Genet; 2021 Feb; 66(2):161-169. PubMed ID: 32778763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An update on the genetic architecture of hyperuricemia and gout.
    Merriman TR
    Arthritis Res Ther; 2015 Apr; 17(1):98. PubMed ID: 25889045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The association between genetic polymorphisms in ABCG2 and SLC2A9 and urate: an updated systematic review and meta-analysis.
    Lukkunaprasit T; Rattanasiri S; Turongkaravee S; Suvannang N; Ingsathit A; Attia J; Thakkinstian A
    BMC Med Genet; 2020 Oct; 21(1):210. PubMed ID: 33087043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variants in urate transporters, ADH1B, GCKR and MEPE genes associate with transition from asymptomatic hyperuricaemia to gout: results of the first gout versus asymptomatic hyperuricaemia GWAS in Caucasians using data from the UK Biobank.
    Sandoval-Plata G; Morgan K; Abhishek A
    Ann Rheum Dis; 2021 Sep; 80(9):1220-1226. PubMed ID: 33832965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes.
    Matsuo H; Yamamoto K; Nakaoka H; Nakayama A; Sakiyama M; Chiba T; Takahashi A; Nakamura T; Nakashima H; Takada Y; Danjoh I; Shimizu S; Abe J; Kawamura Y; Terashige S; Ogata H; Tatsukawa S; Yin G; Okada R; Morita E; Naito M; Tokumasu A; Onoue H; Iwaya K; Ito T; Takada T; Inoue K; Kato Y; Nakamura Y; Sakurai Y; Suzuki H; Kanai Y; Hosoya T; Hamajima N; Inoue I; Kubo M; Ichida K; Ooyama H; Shimizu T; Shinomiya N
    Ann Rheum Dis; 2016 Apr; 75(4):652-9. PubMed ID: 25646370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic Influences on Hyperuricemia and Gout.
    Merriman T
    Rheum Dis Clin North Am; 2017 Aug; 43(3):389-399. PubMed ID: 28711141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics of gout.
    Choi HK; Zhu Y; Mount DB
    Curr Opin Rheumatol; 2010 Mar; 22(2):144-51. PubMed ID: 20110790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [ROLE OF SLC2A9 AND ABCG2 GENE POLYMORPHISMS IN ORIGIN OF HYPERURICEMIA AND GOUT].
    Fadieieva A; Prystupa L; Pogorelova O; Kirichenko N; Dudchenko I
    Georgian Med News; 2016 Mar; (252):79-83. PubMed ID: 27119840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics of hyperuricemia and gout: implications for the present and future.
    George RL; Keenan RT
    Curr Rheumatol Rep; 2013 Feb; 15(2):309. PubMed ID: 23307580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GLUT9 influences uric acid concentration in patients with Lesch-Nyhan disease.
    Torres RJ; Puig JG
    Int J Rheum Dis; 2018 Jun; 21(6):1270-1276. PubMed ID: 29879316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout.
    Woodward OM; Köttgen A; Coresh J; Boerwinkle E; Guggino WB; Köttgen M
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10338-42. PubMed ID: 19506252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal ball gazing: new therapeutic targets for hyperuricaemia and gout.
    Dalbeth N; Merriman T
    Rheumatology (Oxford); 2009 Mar; 48(3):222-6. PubMed ID: 19109320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies.
    Anzai N; Jutabha P; Amonpatumrat-Takahashi S; Sakurai H
    Clin Exp Nephrol; 2012 Feb; 16(1):89-95. PubMed ID: 22038265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pleiotropic effect of the ABCG2 gene in gout: involvement in serum urate levels and progression from hyperuricemia to gout.
    Wrigley R; Phipps-Green AJ; Topless RK; Major TJ; Cadzow M; Riches P; Tausche AK; Janssen M; Joosten LAB; Jansen TL; So A; Harré Hindmarsh J; Stamp LK; Dalbeth N; Merriman TR
    Arthritis Res Ther; 2020 Mar; 22(1):45. PubMed ID: 32164793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ABCG2 as a therapeutic target candidate for gout.
    Fujita K; Ichida K
    Expert Opin Ther Targets; 2018 Feb; 22(2):123-129. PubMed ID: 29264928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people.
    Yamagishi K; Tanigawa T; Kitamura A; Köttgen A; Folsom AR; Iso H;
    Rheumatology (Oxford); 2010 Aug; 49(8):1461-5. PubMed ID: 20421215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics of serum urate concentrations and gout in a high-risk population, patients with chronic kidney disease.
    Jing J; Ekici AB; Sitter T; Eckardt KU; Schaeffner E; Li Y; Kronenberg F; Köttgen A; Schultheiss UT
    Sci Rep; 2018 Sep; 8(1):13184. PubMed ID: 30181573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population-specific influence of SLC2A9 genotype on the acute hyperuricaemic response to a fructose load.
    Dalbeth N; House ME; Gamble GD; Horne A; Pool B; Purvis L; Stewart A; Merriman M; Cadzow M; Phipps-Green A; Merriman TR
    Ann Rheum Dis; 2013 Nov; 72(11):1868-73. PubMed ID: 23349133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.