These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 20472698)
1. Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits. Yamawo A; Hada Y Ann Bot; 2010 Jul; 106(1):143-8. PubMed ID: 20472698 [TBL] [Abstract][Full Text] [Related]
2. Induction and relaxation of extrafloral nectaries in response to simulated herbivory in young Mallotus japonicus plants. Yamawo A; Suzuki N J Plant Res; 2018 Mar; 131(2):255-260. PubMed ID: 29090369 [TBL] [Abstract][Full Text] [Related]
3. Variations in direct and indirect defenses against herbivores on young plants of Mallotus japonicus in relation to soil moisture conditions. Yamawo A; Hada Y; Suzuki N J Plant Res; 2012 Jan; 125(1):71-6. PubMed ID: 21331791 [TBL] [Abstract][Full Text] [Related]
4. Extrafloral nectary-bearing plant Mallotus japonicus uses different types of extrafloral nectaries to establish effective defense by ants. Yamawo A; Suzuki N; Tagawa J J Plant Res; 2019 Jul; 132(4):499-507. PubMed ID: 31228016 [TBL] [Abstract][Full Text] [Related]
5. Concentration and retention of chlorophyll around the extrafloral nectary of Yamawo A; Suzuki N Ecol Evol; 2017 Jun; 7(11):3987-3991. PubMed ID: 28616193 [TBL] [Abstract][Full Text] [Related]
6. Understanding ontogenetic trajectories of indirect defence: ecological and anatomical constraints in the production of extrafloral nectaries. Villamil N; Márquez-Guzmán J; Boege K Ann Bot; 2013 Aug; 112(4):701-9. PubMed ID: 23380241 [TBL] [Abstract][Full Text] [Related]
7. Plant species with larger extrafloral nectaries produce better quality nectar when needed and interact with the best ant partners. Alencar CLDS; Nogueira A; Vicente RE; Coutinho ÍAC J Exp Bot; 2023 Aug; 74(15):4613-4627. PubMed ID: 37115640 [TBL] [Abstract][Full Text] [Related]
8. Evolution of extrafloral nectaries: adaptive process and selective regime changes from forest to savanna. Nogueira A; Rey PJ; Lohmann LG J Evol Biol; 2012 Nov; 25(11):2325-40. PubMed ID: 23013544 [TBL] [Abstract][Full Text] [Related]
9. Diversity and evolution of a trait mediating ant-plant interactions: insights from extrafloral nectaries in Senna (Leguminosae). Marazzi B; Conti E; Sanderson MJ; McMahon MM; Bronstein JL Ann Bot; 2013 Jun; 111(6):1263-75. PubMed ID: 23104672 [TBL] [Abstract][Full Text] [Related]
10. Temporal Variation in the Abundance and Richness of Foliage-Dwelling Ants Mediated by Extrafloral Nectar. Belchior C; Sendoya SF; Del-Claro K PLoS One; 2016; 11(7):e0158283. PubMed ID: 27438722 [TBL] [Abstract][Full Text] [Related]
11. The phylogenetic distribution of extrafloral nectaries in plants. Weber MG; Keeler KH Ann Bot; 2013 Jun; 111(6):1251-61. PubMed ID: 23087129 [TBL] [Abstract][Full Text] [Related]
12. Extrafloral nectary phenotypic plasticity is damage- and resource-dependent in Vicia faba. Mondor EB; Tremblay MN; Messing RH Biol Lett; 2006 Dec; 2(4):583-5. PubMed ID: 17148294 [TBL] [Abstract][Full Text] [Related]
14. Variation in Extrafloral Nectary Productivity Influences the Ant Foraging. Lange D; Calixto ES; Del-Claro K PLoS One; 2017; 12(1):e0169492. PubMed ID: 28046069 [TBL] [Abstract][Full Text] [Related]
15. Morphological and secretory characterization of extrafloral nectaries in plants of coastal Veracruz, Mexico. Díaz-Castelazo C; Rico-Gray V; Ortega F; Angeles G Ann Bot; 2005 Dec; 96(7):1175-89. PubMed ID: 16227307 [TBL] [Abstract][Full Text] [Related]
16. Increased host investment in extrafloral nectar (EFN) improves the efficiency of a mutualistic defensive service. González-Teuber M; Silva Bueno JC; Heil M; Boland W PLoS One; 2012; 7(10):e46598. PubMed ID: 23056362 [TBL] [Abstract][Full Text] [Related]