These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 20472728)
21. Bioturbation of peanut worms Sipunculus nudus on the composition of prokaryotic communities in a tidal flat as revealed by 16S rRNA gene sequences. Li J; Hu R; Guo Y; Chen S; Xie X; Qin JG; Ma Z; Zhu C; Pei S Microbiologyopen; 2019 Aug; 8(8):e00802. PubMed ID: 30734523 [TBL] [Abstract][Full Text] [Related]
22. Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan. Kubo K; Knittel K; Amann R; Fukui M; Matsuura K Syst Appl Microbiol; 2011 Jun; 34(4):293-302. PubMed ID: 21353426 [TBL] [Abstract][Full Text] [Related]
23. Diversity and composition of sulfate- and sulfite-reducing prokaryotes as affected by marine-freshwater gradient and sulfate availability. Fan LF; Tang SL; Chen CP; Hsieh HL Microb Ecol; 2012 Jan; 63(1):224-37. PubMed ID: 21785985 [TBL] [Abstract][Full Text] [Related]
24. Coexistence of sulfate reducers with the other oil bacterial groups in Diyarbakır oil fields. Tüccar T; Ilhan-Sungur E; Abbas B; Muyzer G Anaerobe; 2019 Oct; 59():19-31. PubMed ID: 31029749 [TBL] [Abstract][Full Text] [Related]
25. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Klepac-Ceraj V; Bahr M; Crump BC; Teske AP; Hobbie JE; Polz MF Environ Microbiol; 2004 Jul; 6(7):686-98. PubMed ID: 15186347 [TBL] [Abstract][Full Text] [Related]
26. Distribution and diversity of bacterial communities and sulphate-reducing bacteria in a paddy soil irrigated with acid mine drainage. Wang H; Guo CL; Yang CF; Lu GN; Chen MQ; Dang Z J Appl Microbiol; 2016 Jul; 121(1):196-206. PubMed ID: 27005987 [TBL] [Abstract][Full Text] [Related]
27. Quantifying expression of a dissimilatory (bi)sulfite reductase gene in petroleum-contaminated marine harbor sediments. Chin KJ; Sharma ML; Russell LA; O'Neill KR; Lovley DR Microb Ecol; 2008 Apr; 55(3):489-99. PubMed ID: 17786505 [TBL] [Abstract][Full Text] [Related]
28. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Dhillon A; Teske A; Dillon J; Stahl DA; Sogin ML Appl Environ Microbiol; 2003 May; 69(5):2765-72. PubMed ID: 12732547 [TBL] [Abstract][Full Text] [Related]
29. Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Elshahed MS; Senko JM; Najar FZ; Kenton SM; Roe BA; Dewers TA; Spear JR; Krumholz LR Appl Environ Microbiol; 2003 Sep; 69(9):5609-21. PubMed ID: 12957951 [TBL] [Abstract][Full Text] [Related]
30. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Labrenz M; Banfield JF Microb Ecol; 2004 Apr; 47(3):205-17. PubMed ID: 14994175 [TBL] [Abstract][Full Text] [Related]
31. Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake. Kubo K; Kojima H; Fukui M Syst Appl Microbiol; 2014 Oct; 37(7):510-9. PubMed ID: 25034383 [TBL] [Abstract][Full Text] [Related]
32. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Burns AS; Pugh CW; Segid YT; Behum PT; Lefticariu L; Bender KS Biodegradation; 2012 Jun; 23(3):415-29. PubMed ID: 22083105 [TBL] [Abstract][Full Text] [Related]
33. Comprehensive detection of phototrophic sulfur bacteria using PCR primers that target reverse dissimilatory sulfite reductase gene. Mori Y; Purdy KJ; Oakley BB; Kondo R Microbes Environ; 2010; 25(3):190-6. PubMed ID: 21576872 [TBL] [Abstract][Full Text] [Related]
34. Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments. Sánchez-Andrea I; Stams AJ; Amils R; Sanz JL Environ Microbiol Rep; 2013 Oct; 5(5):672-8. PubMed ID: 24115617 [TBL] [Abstract][Full Text] [Related]
35. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813 [TBL] [Abstract][Full Text] [Related]
36. Phylogenetic analysis reveals multiple lateral transfers of adenosine-5'-phosphosulfate reductase genes among sulfate-reducing microorganisms. Friedrich MW J Bacteriol; 2002 Jan; 184(1):278-89. PubMed ID: 11741869 [TBL] [Abstract][Full Text] [Related]
37. Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acidand Metal-Tolerant Sulfate-Reducer. Nguyen HT; Nguyen HL; Nguyen MH; Nguyen TKN; Dinh HT J Microbiol Biotechnol; 2020 Jul; 30(7):1005-1012. PubMed ID: 32160701 [TBL] [Abstract][Full Text] [Related]
38. Molecular ecology of a facultative swine waste lagoon. Goh SH; Mabbett AN; Welch JP; Hall SJ; McEwan AG Lett Appl Microbiol; 2009 Apr; 48(4):486-92. PubMed ID: 19243502 [TBL] [Abstract][Full Text] [Related]
39. Performance of a Geosynthetic-Clay-Liner Cover System at a Cu/Zn Mine Tailings Impoundment. Pakostova E; Schmall AJ; Holland SP; White H; Ptacek CJ; Blowes DW Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32033946 [TBL] [Abstract][Full Text] [Related]
40. Diversity of sulfate-reducing genes (dsrAB) in sediments from Puget Sound. Tiquia SM Environ Technol; 2008 Oct; 29(10):1095-108. PubMed ID: 18942577 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]