These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 20472944)
41. A "molecular eraser" for dip-pen nanolithography. Jang JW; Maspoch D; Fujigaya T; Mirkin CA Small; 2007 Apr; 3(4):600-5. PubMed ID: 17328015 [No Abstract] [Full Text] [Related]
42. Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Lenhert S; Sun P; Wang Y; Fuchs H; Mirkin CA Small; 2007 Jan; 3(1):71-5. PubMed ID: 17294472 [No Abstract] [Full Text] [Related]
43. Agarose-assisted dip-pen nanolithography of oligonucleotides and proteins. Senesi AJ; Rozkiewicz DI; Reinhoudt DN; Mirkin CA ACS Nano; 2009 Aug; 3(8):2394-402. PubMed ID: 19645425 [TBL] [Abstract][Full Text] [Related]
44. A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography. Arango-Santander S; Pelaez-Vargas A; Freitas SC; García C Sci Rep; 2018 Oct; 8(1):15818. PubMed ID: 30361619 [TBL] [Abstract][Full Text] [Related]
45. Dip-pen patterning and surface assembly of peptide amphiphiles. Jiang H; Stupp SI Langmuir; 2005 Jun; 21(12):5242-6. PubMed ID: 15924443 [TBL] [Abstract][Full Text] [Related]
46. Template-directed adsorption of block copolymers on alkanethiol-patterned gold surfaces. Chandekar A; Sengupta SK; Barry CM; Mead JL; Whitten JE Langmuir; 2006 Sep; 22(19):8071-7. PubMed ID: 16952243 [TBL] [Abstract][Full Text] [Related]
47. The power of the pen: development of massively parallel dip-pen nanolithography. Mirkin CA ACS Nano; 2007 Sep; 1(2):79-83. PubMed ID: 19206523 [TBL] [Abstract][Full Text] [Related]
48. Enzymatic nanolithography of a self-assembled oligonucleotide monolayer on gold. Hyun J; Kim J; Craig SL; Chilkoti A J Am Chem Soc; 2004 Apr; 126(15):4770-1. PubMed ID: 15080668 [TBL] [Abstract][Full Text] [Related]
49. Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques. Kim KH; Moldovan N; Ke C; Espinosa HD; Xiao X; Carlisle JA; Auciello O Small; 2005 Aug; 1(8-9):866-74. PubMed ID: 17193541 [TBL] [Abstract][Full Text] [Related]
50. Micro- and nanofabrication of robust reactive arrays based on the covalent coupling of dendrimers to activated monolayers. Degenhart GH; Dordi B; Schönherr H; Vancso GJ Langmuir; 2004 Jul; 20(15):6216-24. PubMed ID: 15248705 [TBL] [Abstract][Full Text] [Related]
51. A new method of biosensing with 1 microl of Escherichia coli suspension using atomic force microscopy. Tanaka S; Sugasawa H; Morii T; Okada T; Abe M; Kato N; Kuroda R; Nasu T; Nagai M; Umemura K Anal Biochem; 2005 Oct; 345(1):116-21. PubMed ID: 16125129 [TBL] [Abstract][Full Text] [Related]
52. Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity. Huang J; Koepsel RR; Murata H; Wu W; Lee SB; Kowalewski T; Russell AJ; Matyjaszewski K Langmuir; 2008 Jun; 24(13):6785-95. PubMed ID: 18517227 [TBL] [Abstract][Full Text] [Related]
53. Positioning and guidance of neurons on gold surfaces by directed assembly of proteins using Atomic Force Microscopy. Staii C; Viesselmann C; Ballweg J; Shi L; Liu GY; Williams JC; Dent EW; Coppersmith SN; Eriksson MA Biomaterials; 2009 Jul; 30(20):3397-404. PubMed ID: 19342092 [TBL] [Abstract][Full Text] [Related]
54. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis. Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634 [TBL] [Abstract][Full Text] [Related]
56. Substrate-independent dip-pen nanolithography based on reactive coatings. Chen HY; Hirtz M; Deng X; Laue T; Fuchs H; Lahann J J Am Chem Soc; 2010 Dec; 132(51):18023-5. PubMed ID: 21138264 [TBL] [Abstract][Full Text] [Related]
57. Comparative height measurements of dip-pen nanolithography-produced lipid membrane stacks with atomic force, fluorescence, and surface-enhanced ellipsometric contrast microscopy. Hirtz M; Corso R; Sekula-Neuner S; Fuchs H Langmuir; 2011 Sep; 27(18):11605-8. PubMed ID: 21812484 [TBL] [Abstract][Full Text] [Related]
58. Nanoscale molecular transport: the case of dip-pen nanolithography. Giam LR; Wang Y; Mirkin CA J Phys Chem A; 2009 Apr; 113(16):3779-82. PubMed ID: 19209881 [TBL] [Abstract][Full Text] [Related]
59. Direct patterning of silanized-biomolecules on semiconductor surfaces. Nyamjav D; Holz RC Langmuir; 2010 Dec; 26(23):18300-2. PubMed ID: 21047099 [TBL] [Abstract][Full Text] [Related]
60. Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal. Whitehead KA; Rogers D; Colligon J; Wright C; Verran J Colloids Surf B Biointerfaces; 2006 Aug; 51(1):44-53. PubMed ID: 16822658 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]