These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Photoconduction properties in aligned assemblies of colloidal CdSe/CdS nanorods. Persano A; De Giorgi M; Fiore A; Cingolani R; Manna L; Cola A; Krahne R ACS Nano; 2010 Mar; 4(3):1646-52. PubMed ID: 20184386 [TBL] [Abstract][Full Text] [Related]
4. Field gradients can control the alignment of nanorods. Ooi C; Yellen BB Langmuir; 2008 Aug; 24(16):8514-21. PubMed ID: 18630934 [TBL] [Abstract][Full Text] [Related]
5. Orientation and Dynamics of ZnO Nanorod Liquid Crystals in Electric Fields. Zorn M; Tahir MN; Bergmann B; Tremel W; Grigoriadis C; Floudas G; Zentel R Macromol Rapid Commun; 2010 Jun; 31(12):1101-7. PubMed ID: 21590862 [TBL] [Abstract][Full Text] [Related]
6. Theoretical description of adiabatic laser alignment and mixed-field orientation: the need for a non-adiabatic model. Omiste JJ; Gärttner M; Schmelcher P; González-Férez R; Holmegaard L; Nielsen JH; Stapelfeldt H; Küpper J Phys Chem Chem Phys; 2011 Nov; 13(42):18815-24. PubMed ID: 21717006 [TBL] [Abstract][Full Text] [Related]
7. Near-field optical imaging of plasmon modes in gold nanorods. Imura K; Nagahara T; Okamoto H J Chem Phys; 2005 Apr; 122(15):154701. PubMed ID: 15945650 [TBL] [Abstract][Full Text] [Related]
10. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Lee KS; El-Sayed MA J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772 [TBL] [Abstract][Full Text] [Related]
11. Rotational diffusion and alignment of short gold nanorods in an external electric field. Zijlstra P; van Stee M; Verhart N; Gu Z; Orrit M Phys Chem Chem Phys; 2012 Apr; 14(13):4584-8. PubMed ID: 22366909 [TBL] [Abstract][Full Text] [Related]
12. Electrophoresis in strong electric fields. Barany S Adv Colloid Interface Sci; 2009; 147-148():36-43. PubMed ID: 19041962 [TBL] [Abstract][Full Text] [Related]
13. Plasmon spectra in two-dimensional nanorod arrays. Nie ZH; Fava D; Kumacheva E; Ruda HE; Shik A Nanotechnology; 2009 Jul; 20(29):295203. PubMed ID: 19567959 [TBL] [Abstract][Full Text] [Related]
14. Estimation of frequency-dependent electrokinetic forces on tin oxide nanobelts in low frequency electric fields. Kumar S; Hesketh PJ Nanotechnology; 2010 Aug; 21(32):325501. PubMed ID: 20647628 [TBL] [Abstract][Full Text] [Related]
15. Electric field versus surface alignment in confined films of a diblock copolymer melt. Kyrylyuk AV; Fraaije JG J Chem Phys; 2006 Oct; 125(16):164716. PubMed ID: 17092129 [TBL] [Abstract][Full Text] [Related]
16. Dipolar interactions in molecules aligned by strong AC electric fields. Peshkovsky A; McDermott AE J Magn Reson; 2000 Nov; 147(1):104-9. PubMed ID: 11042052 [TBL] [Abstract][Full Text] [Related]
17. Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina. Jenrow KA; Smith CH; Liboff AR Bioelectromagnetics; 1996; 17(6):467-74. PubMed ID: 8986364 [TBL] [Abstract][Full Text] [Related]
18. Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields. Gangwal S; Cayre OJ; Velev OD Langmuir; 2008 Dec; 24(23):13312-20. PubMed ID: 18973307 [TBL] [Abstract][Full Text] [Related]
19. The optical conductivity of bilayer zigzag-edge graphene nanoribbons with external transverse electric fields. Zhu WH; Liu ZZ; Ding GH J Phys Condens Matter; 2012 Sep; 24(35):355302. PubMed ID: 22885614 [TBL] [Abstract][Full Text] [Related]
20. Self-consistent field study of the alignment by an electric field of a cylindrical phase of block copolymer. Lin CY; Schick M J Chem Phys; 2006 Jul; 125(3):34902. PubMed ID: 16863380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]