These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 20473155)

  • 21. Endoplasmic Reticulum Stress, Calcium Dysregulation and Altered Protein Translation: Intersection of Processes That Contribute to Cancer Cachexia Induced Skeletal Muscle Wasting.
    Isaac ST; Tan TC; Polly P
    Curr Drug Targets; 2016; 17(10):1140-6. PubMed ID: 25882219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amiloride ameliorates muscle wasting in cancer cachexia through inhibiting tumor-derived exosome release.
    Zhou L; Zhang T; Shao W; Lu R; Wang L; Liu H; Jiang B; Li S; Zhuo H; Wang S; Li Q; Huang C; Lin D
    Skelet Muscle; 2021 Jul; 11(1):17. PubMed ID: 34229732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversal of muscle atrophy by Zhimu and Huangbai herb pair via activation of IGF-1/Akt and autophagy signal in cancer cachexia.
    Zhuang P; Zhang J; Wang Y; Zhang M; Song L; Lu Z; Zhang L; Zhang F; Wang J; Zhang Y; Wei H; Li H
    Support Care Cancer; 2016 Mar; 24(3):1189-98. PubMed ID: 26280404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new look at an old drug for the treatment of cancer cachexia: megestrol acetate.
    Argilés JM; Anguera A; Stemmler B
    Clin Nutr; 2013 Jun; 32(3):319-24. PubMed ID: 23395103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein breakdown in cancer cachexia.
    Sandri M
    Semin Cell Dev Biol; 2016 Jun; 54():11-9. PubMed ID: 26564688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness.
    Chacon-Cabrera A; Fermoselle C; Urtreger AJ; Mateu-Jimenez M; Diament MJ; de Kier Joffé ED; Sandri M; Barreiro E
    J Cell Physiol; 2014 Nov; 229(11):1660-72. PubMed ID: 24615622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.
    Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM
    Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryptotanshinone prevents muscle wasting in CT26-induced cancer cachexia through inhibiting STAT3 signaling pathway.
    Chen L; Yang Q; Zhang H; Wan L; Xin B; Cao Y; Zhang J; Guo C
    J Ethnopharmacol; 2020 Oct; 260():113066. PubMed ID: 32505837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The 2015 ESPEN Sir David Cuthbertson lecture: Inflammation as the driving force of muscle wasting in cancer.
    Argilés JM
    Clin Nutr; 2017 Jun; 36(3):798-803. PubMed ID: 27268093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Update on emerging drugs for cancer cachexia.
    Murphy KT; Lynch GS
    Expert Opin Emerg Drugs; 2009 Dec; 14(4):619-32. PubMed ID: 19860537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Attenuation of skeletal muscle atrophy in cancer cachexia by D-myo-inositol 1,2,6-triphosphate.
    Russell ST; Siren PM; Siren MJ; Tisdale MJ
    Cancer Chemother Pharmacol; 2009 Aug; 64(3):517-27. PubMed ID: 19112551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia.
    Attaix D; Combaret L; Béchet D; Taillandier D
    Curr Opin Support Palliat Care; 2008 Dec; 2(4):262-6. PubMed ID: 19069311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of skeletal muscle degradation and its therapy in cancer cachexia.
    Melstrom LG; Melstrom KA; Ding XZ; Adrian TE
    Histol Histopathol; 2007 Jul; 22(7):805-14. PubMed ID: 17455154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigallocatechin-3-gallate effectively attenuates skeletal muscle atrophy caused by cancer cachexia.
    Wang H; Lai YJ; Chan YL; Li TL; Wu CJ
    Cancer Lett; 2011 Jun; 305(1):40-9. PubMed ID: 21397390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model.
    Chen T; Li B; Xu Y; Meng S; Wang Y; Jiang Y
    Oncol Rep; 2018 Aug; 40(2):1129-1137. PubMed ID: 29845270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular mechanisms involved in muscle wasting in cancer and ageing: cachexia versus sarcopenia.
    Argilés JM; Busquets S; Felipe A; López-Soriano FJ
    Int J Biochem Cell Biol; 2005 May; 37(5):1084-104. PubMed ID: 15743680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of vitamin D in cancer cachexia.
    Penna F; Camperi A; Muscaritoli M; Filigheddu N; Costelli P
    Curr Opin Support Palliat Care; 2017 Dec; 11(4):287-292. PubMed ID: 28922293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial plasticity in cancer-related muscle wasting: potential approaches for its management.
    Vitorino R; Moreira-Gonçalves D; Ferreira R
    Curr Opin Clin Nutr Metab Care; 2015 May; 18(3):226-33. PubMed ID: 25783794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia.
    Penedo-Vázquez A; Duran X; Mateu J; López-Postigo A; Barreiro E
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies.
    Dodson S; Baracos VE; Jatoi A; Evans WJ; Cella D; Dalton JT; Steiner MS
    Annu Rev Med; 2011; 62():265-79. PubMed ID: 20731602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.