BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 20473155)

  • 21. Endoplasmic Reticulum Stress, Calcium Dysregulation and Altered Protein Translation: Intersection of Processes That Contribute to Cancer Cachexia Induced Skeletal Muscle Wasting.
    Isaac ST; Tan TC; Polly P
    Curr Drug Targets; 2016; 17(10):1140-6. PubMed ID: 25882219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amiloride ameliorates muscle wasting in cancer cachexia through inhibiting tumor-derived exosome release.
    Zhou L; Zhang T; Shao W; Lu R; Wang L; Liu H; Jiang B; Li S; Zhuo H; Wang S; Li Q; Huang C; Lin D
    Skelet Muscle; 2021 Jul; 11(1):17. PubMed ID: 34229732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversal of muscle atrophy by Zhimu and Huangbai herb pair via activation of IGF-1/Akt and autophagy signal in cancer cachexia.
    Zhuang P; Zhang J; Wang Y; Zhang M; Song L; Lu Z; Zhang L; Zhang F; Wang J; Zhang Y; Wei H; Li H
    Support Care Cancer; 2016 Mar; 24(3):1189-98. PubMed ID: 26280404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new look at an old drug for the treatment of cancer cachexia: megestrol acetate.
    Argilés JM; Anguera A; Stemmler B
    Clin Nutr; 2013 Jun; 32(3):319-24. PubMed ID: 23395103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein breakdown in cancer cachexia.
    Sandri M
    Semin Cell Dev Biol; 2016 Jun; 54():11-9. PubMed ID: 26564688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness.
    Chacon-Cabrera A; Fermoselle C; Urtreger AJ; Mateu-Jimenez M; Diament MJ; de Kier Joffé ED; Sandri M; Barreiro E
    J Cell Physiol; 2014 Nov; 229(11):1660-72. PubMed ID: 24615622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.
    Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM
    Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryptotanshinone prevents muscle wasting in CT26-induced cancer cachexia through inhibiting STAT3 signaling pathway.
    Chen L; Yang Q; Zhang H; Wan L; Xin B; Cao Y; Zhang J; Guo C
    J Ethnopharmacol; 2020 Oct; 260():113066. PubMed ID: 32505837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The 2015 ESPEN Sir David Cuthbertson lecture: Inflammation as the driving force of muscle wasting in cancer.
    Argilés JM
    Clin Nutr; 2017 Jun; 36(3):798-803. PubMed ID: 27268093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Update on emerging drugs for cancer cachexia.
    Murphy KT; Lynch GS
    Expert Opin Emerg Drugs; 2009 Dec; 14(4):619-32. PubMed ID: 19860537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Attenuation of skeletal muscle atrophy in cancer cachexia by D-myo-inositol 1,2,6-triphosphate.
    Russell ST; Siren PM; Siren MJ; Tisdale MJ
    Cancer Chemother Pharmacol; 2009 Aug; 64(3):517-27. PubMed ID: 19112551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia.
    Attaix D; Combaret L; Béchet D; Taillandier D
    Curr Opin Support Palliat Care; 2008 Dec; 2(4):262-6. PubMed ID: 19069311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of skeletal muscle degradation and its therapy in cancer cachexia.
    Melstrom LG; Melstrom KA; Ding XZ; Adrian TE
    Histol Histopathol; 2007 Jul; 22(7):805-14. PubMed ID: 17455154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigallocatechin-3-gallate effectively attenuates skeletal muscle atrophy caused by cancer cachexia.
    Wang H; Lai YJ; Chan YL; Li TL; Wu CJ
    Cancer Lett; 2011 Jun; 305(1):40-9. PubMed ID: 21397390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model.
    Chen T; Li B; Xu Y; Meng S; Wang Y; Jiang Y
    Oncol Rep; 2018 Aug; 40(2):1129-1137. PubMed ID: 29845270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular mechanisms involved in muscle wasting in cancer and ageing: cachexia versus sarcopenia.
    Argilés JM; Busquets S; Felipe A; López-Soriano FJ
    Int J Biochem Cell Biol; 2005 May; 37(5):1084-104. PubMed ID: 15743680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of vitamin D in cancer cachexia.
    Penna F; Camperi A; Muscaritoli M; Filigheddu N; Costelli P
    Curr Opin Support Palliat Care; 2017 Dec; 11(4):287-292. PubMed ID: 28922293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia.
    Penedo-Vázquez A; Duran X; Mateu J; López-Postigo A; Barreiro E
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial plasticity in cancer-related muscle wasting: potential approaches for its management.
    Vitorino R; Moreira-Gonçalves D; Ferreira R
    Curr Opin Clin Nutr Metab Care; 2015 May; 18(3):226-33. PubMed ID: 25783794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies.
    Dodson S; Baracos VE; Jatoi A; Evans WJ; Cella D; Dalton JT; Steiner MS
    Annu Rev Med; 2011; 62():265-79. PubMed ID: 20731602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.