These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2047340)

  • 41. A nonlinear anisotropic viscoelastic model for the tensile behavior of the corneal stroma.
    Nguyen TD; Jones RE; Boyce BL
    J Biomech Eng; 2008 Aug; 130(4):041020. PubMed ID: 18601462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strain rate effect on the failure properties of tendons.
    Ng BH; Chou SM; Lim BH; Chong A
    Proc Inst Mech Eng H; 2004; 218(3):203-6. PubMed ID: 15239571
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.
    Lai A; Schache AG; Lin YC; Pandy MG
    J Exp Biol; 2014 Sep; 217(Pt 17):3159-68. PubMed ID: 24948642
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Micromechanical poroelastic finite element and shear-lag models of tendon predict large strain dependent Poisson's ratios and fluid expulsion under tensile loading.
    Ahmadzadeh H; Freedman BR; Connizzo BK; Soslowsky LJ; Shenoy VB
    Acta Biomater; 2015 Aug; 22():83-91. PubMed ID: 25934322
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unconstrained muscle-tendon workloops indicate resonance tuning as a mechanism for elastic limb behavior during terrestrial locomotion.
    Robertson BD; Sawicki GS
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):E5891-8. PubMed ID: 26460038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tensile properties of the supraspinatus tendon.
    Itoi E; Berglund LJ; Grabowski JJ; Schultz FM; Growney ES; Morrey BF; An KN
    J Orthop Res; 1995 Jul; 13(4):578-84. PubMed ID: 7674074
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanical properties of the long head of the biceps tendon.
    McGough RL; Debski RE; Taskiran E; Fu FH; Woo SL
    Knee Surg Sports Traumatol Arthrosc; 1996; 3(4):226-9. PubMed ID: 8739718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elastic and viscoelastic properties of a type I collagen fiber.
    Sopakayang R; De Vita R; Kwansa A; Freeman JW
    J Theor Biol; 2012 Jan; 293():197-205. PubMed ID: 22037061
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of activity on avian gastrocnemius tendon.
    Foutz TL; Griffin AK; Halper JT; Rowland GN
    Poult Sci; 2007 Feb; 86(2):211-8. PubMed ID: 17234832
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A microstructure model for the rheology of mammalian tendon.
    Lanir Y
    J Biomech Eng; 1980 Nov; 102(4):332-9. PubMed ID: 6965197
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The structure and function of normally mineralizing avian tendons.
    Landis WJ; Silver FH
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Dec; 133(4):1135-57. PubMed ID: 12485697
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic viscoelastic behavior of lower extremity tendons during simulated running.
    De Zee M; Bojsen-Moller F; Voigt M
    J Appl Physiol (1985); 2000 Oct; 89(4):1352-9. PubMed ID: 11007569
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Viscoelastic shear lag model to predict the micromechanical behavior of tendon under dynamic tensile loading.
    Wu J; Yuan H; Li L; Fan K; Qian S; Li B
    J Theor Biol; 2018 Jan; 437():202-213. PubMed ID: 29111420
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of mechanical properties of rat tibialis anterior tendon evaluated using two different approaches.
    Wu JZ; Brumfield A; Miller GR; Metheny R; Cutlip RG
    Biomed Mater Eng; 2004; 14(1):13-22. PubMed ID: 14757949
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stress relaxation and recovery in tendon and ligament: experiment and modeling.
    Duenwald SE; Vanderby R; Lakes RS
    Biorheology; 2010; 47(1):1-14. PubMed ID: 20448294
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon.
    Khayyeri H; Gustafsson A; Heuijerjans A; Matikainen MK; Julkunen P; Eliasson P; Aspenberg P; Isaksson H
    PLoS One; 2015; 10(6):e0126869. PubMed ID: 26030436
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of the muscle belly and tendon of soleus, gastrocnemius, and plantaris in mechanical energy absorption and generation during cat locomotion.
    Prilutsky BI; Herzog W; Leonard TR; Allinger TL
    J Biomech; 1996 Apr; 29(4):417-34. PubMed ID: 8964771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.
    Groth KM; Granata KP
    J Biomech Eng; 2008 Jun; 130(3):031005. PubMed ID: 18532854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading.
    Lavagnino M; Arnoczky SP; Kepich E; Caballero O; Haut RC
    Biomech Model Mechanobiol; 2008 Oct; 7(5):405-16. PubMed ID: 17901992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.