These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2047369)

  • 1. Penetration of the mosquito midgut wall by the ookinetes of Plasmodium yoelii nigeriensis.
    Syafruddin ; Arakawa R; Kamimura K; Kawamoto F
    Parasitol Res; 1991; 77(3):230-6. PubMed ID: 2047369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii.
    Noden BH; Vaughan JA; Pumpuni CB; Beier JC
    Parasitol Int; 2011 Dec; 60(4):440-6. PubMed ID: 21763778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penetration of the mosquito (Aedes aegypti) midgut wall by the ookinetes of Plasmodium gallinaceum.
    Torii M; Nakamura K; Sieber KP; Miller LH; Aikawa M
    J Protozool; 1992; 39(4):449-54. PubMed ID: 1403980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic dissection of a Plasmodium-refractory strain of malaria vector Anopheles stephensi: the reduced susceptibility to P. berghei and P. yoelii.
    Shinzawa N; Ishino T; Tachibana M; Tsuboi T; Torii M
    PLoS One; 2013; 8(5):e63753. PubMed ID: 23717475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PSOP1, putative secreted ookinete protein 1, is localized to the micronemes of Plasmodium yoelii and P. berghei ookinetes.
    Tachibana M; Iriko H; Baba M; Torii M; Ishino T
    Parasitol Int; 2021 Oct; 84():102407. PubMed ID: 34147682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood digestion in the mosquito, Anopheles stephensi: the effects of Plasmodium yoelii nigeriensis on midgut enzyme activities.
    Jahan N; Docherty PT; Billingsley PF; Hurd H
    Parasitology; 1999 Dec; 119 ( Pt 6)():535-41. PubMed ID: 10633914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of anti-mosquito-midgut antibodies on the development of oocysts of Plasmodium yoelii in Anopheles stephensi].
    Wei QF; Gao XZ
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2000; 18(4):197-9. PubMed ID: 12567656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural studies on the interaction of Plasmodium falciparum ookinetes with the midgut epithelium of Anopheles stephensi mosquitoes.
    Meis JF; Ponnudurai T
    Parasitol Res; 1987; 73(6):500-6. PubMed ID: 3321042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Live
    Trisnadi N; Barillas-Mury C
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32878934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential role of membrane-attack protein in malarial transmission to mosquito host.
    Kadota K; Ishino T; Matsuyama T; Chinzei Y; Yuda M
    Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16310-5. PubMed ID: 15520375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmodium falciparum ookinete invasion of the midgut epithelium of Anopheles stephensi is consistent with the Time Bomb model.
    Baton LA; Ranford-Cartwright LC
    Parasitology; 2004 Dec; 129(Pt 6):663-76. PubMed ID: 15648689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lectin-carbohydrate recognition mechanism of Plasmodium berghei in the midgut of malaria vector Anopheles stephensi using quantum dot as a new approach.
    Basseri HR; Javazm MS; Farivar L; Abai MR
    Acta Trop; 2016 Apr; 156():37-42. PubMed ID: 26772447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of human malaria parasites, Plasmodium vivax and P.falciparum, with the midgut of Anopheles mosquitoes.
    Ramasamy MS; Kulasekera R; Wanniarachchi IC; Srikrishnaraj KA; Ramasamy R
    Med Vet Entomol; 1997 Jul; 11(3):290-6. PubMed ID: 9330262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmodium falciparum ookinetes migrate intercellularly through Anopheles stephensi midgut epithelium.
    Meis JF; Pool G; van Gemert GJ; Lensen AH; Ponnudurai T; Meuwissen JH
    Parasitol Res; 1989; 76(1):13-9. PubMed ID: 2695921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of Anopheles dirus for refractoriness and susceptibility to Plasmodium yoelii nigeriensis.
    Somboon P; Prapanthadara L; Suwonkerd W
    Med Vet Entomol; 1999 Oct; 13(4):355-61. PubMed ID: 10608223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved method for the in vitro differentiation of Plasmodium falciparum gametocytes into ookinetes.
    Ghosh AK; Dinglasan RR; Ikadai H; Jacobs-Lorena M
    Malar J; 2010 Jul; 9():194. PubMed ID: 20615232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The establishment of Plasmodium berghei in mosquitoes of a refractory and a susceptible line of Anopheles atroparvus.
    Sluiters JF; Visser PE; van der Kaay HJ
    Z Parasitenkd; 1986; 72(3):313-22. PubMed ID: 3521118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Midgut specific immune response of vector mosquito Anopheles stephensi to malaria parasite Plasmodium.
    Gakhar SK; Shandilya HK
    Indian J Exp Biol; 2001 Mar; 39(3):287-90. PubMed ID: 11495292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure of the encapsulation of Plasmodium cynomolgi (B strain) on the midgut of a refractory strain of Anopheles gambiae.
    Paskewitz SM; Brown MR; Lea AO; Collins FH
    J Parasitol; 1988 Jun; 74(3):432-9. PubMed ID: 3379524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of Nosema algerae on the development of Plasmodium yoelii nigeriensis in Anopheles stephensi.
    Schenker W; Maier WA; Seitz HM
    Parasitol Res; 1992; 78(1):56-9. PubMed ID: 1584748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.