These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 20473955)

  • 41. Dioxygenation of naphthalene by Pseudomonas fluorescens N3 dioxygenase: optimization of the process parameters.
    Di Gennaro P; Conforti P; Lasagni M; Bestetti G; Bernasconi S; Orsini F; Sello G
    Biotechnol Bioeng; 2006 Feb; 93(3):511-8. PubMed ID: 16193519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Microbial biosynthesis and biotransformation of indigo and indigo-like pigments].
    Han X; Wang W; Xiao X
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):921-6. PubMed ID: 18807970
    [TBL] [Abstract][Full Text] [Related]  

  • 43. New naphthalene-degrading marine Pseudomonas strains.
    García-Valdés E; Cozar E; Rotger R; Lalucat J; Ursing J
    Appl Environ Microbiol; 1988 Oct; 54(10):2478-85. PubMed ID: 3202629
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum sp. TSS101.
    Vidyasagar M; Prakash SB; Sreeramulu K
    Lett Appl Microbiol; 2006 Oct; 43(4):385-91. PubMed ID: 16965368
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improvement of carbonyl reductase production of Geotrichum candidum for the transformation of 1-acetonaphthone to S(-)-1-(1'-napthyl) ethanol.
    Bhattacharyya MS; Banerjee UC
    Bioresour Technol; 2007 Jul; 98(10):1958-63. PubMed ID: 17027259
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Drastic change in cell surface hydrophobicity of a new bacterial strain, Pseudomonas sp. TIS1-127, induced by growth temperature and its effects on the toluene-conversion rate.
    Hori K; Hiramatsu N; Nannbu M; Kanie K; Okochi M; Honda H; Watanabe H
    J Biosci Bioeng; 2009 Mar; 107(3):250-5. PubMed ID: 19269587
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous mineralization of glyphosate and diuron by a consortium of three bacteria as free- and/or immobilized-cells formulations.
    Bazot S; Lebeau T
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1351-8. PubMed ID: 18026726
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method.
    Li Y; Jiang H; Xu Y; Zhang X
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1207-17. PubMed ID: 18064455
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The measurement of toluene dioxygenase activity in biofilm culture of Pseudomonas putida F1.
    Woo Hj; Sanseverino J; Cox CD; Robinson KG; Sayler GS
    J Microbiol Methods; 2000 Apr; 40(2):181-91. PubMed ID: 10699674
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Whole cell-derived fatty acid profiles of Pseudomonas sp. JS150 during naphthalene degradation.
    Mrozik A; Labuzek S; Piotrowska-Seget Z
    Pol J Microbiol; 2005; 54(2):137-44. PubMed ID: 16209107
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of phenazine-1-carboxylic acid production by a gacA/qscR-inactivated Pseudomonas sp. M18GQ harboring pME6032Phz using response surface methodology.
    Zhou Q; Su J; Jiang H; Huang X; Xu Y
    Appl Microbiol Biotechnol; 2010 May; 86(6):1761-73. PubMed ID: 20155354
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association].
    Anan'ina LN; Plotnikova EG; Gavrish EIu; Demakov VA; Evtushenko LI
    Mikrobiologiia; 2007; 76(3):369-76. PubMed ID: 17633412
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Organic Solvents on Indigo Formation by Pseudomonas sp. strain ST-200 Grown with High Levels of Indole.
    Doukyu N; Arai T; Aono R
    Biosci Biotechnol Biochem; 1998; 62(6):1075-80. PubMed ID: 27388642
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of an efficient indole oxygenase system from Cupriavidus sp. SHE for indigo production.
    Dai C; Ma Q; Li Y; Zhou D; Yang B; Qu Y
    Bioprocess Biosyst Eng; 2019 Dec; 42(12):1963-1971. PubMed ID: 31482396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Indigo formation by microorganisms expressing styrene monooxygenase activity.
    O'Connor KE; Dobson AD; Hartmans S
    Appl Environ Microbiol; 1997 Nov; 63(11):4287-91. PubMed ID: 9361415
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physical state in which naphthalene and bibenzyl are utilized by bacteria.
    Wodzinski RS; Bertolini D
    Appl Microbiol; 1972 Jun; 23(6):1077-81. PubMed ID: 4557558
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancing Indigo Production by Over-Expression of the Styrene Monooxygenase in Pseudomonas putida.
    Cheng L; Yin S; Chen M; Sun B; Hao S; Wang C
    Curr Microbiol; 2016 Aug; 73(2):248-54. PubMed ID: 27154464
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Production of indirubin from tryptophan by recombinant Escherichia coli containing naphthalene dioxygenase genes from Comamonas sp. MQ.
    Zhang X; Qu Y; Ma Q; Kong C; Zhou H; Cao X; Shen W; Shen E; Zhou J
    Appl Biochem Biotechnol; 2014 Mar; 172(6):3194-206. PubMed ID: 24500796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degradation of triphenyltin by a fluorescent pseudomonad.
    Inoue H; Takimura O; Fuse H; Murakami K; Kamimura K; Yamaoka Y
    Appl Environ Microbiol; 2000 Aug; 66(8):3492-8. PubMed ID: 10919812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.