These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2047437)

  • 21. Calcium metabolism and the osteopenia of space flight.
    Scratcherd T; Grundy D
    J Br Interplanet Soc; 1989 Aug; 42(7):371-3. PubMed ID: 11540231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Medical investigations results obtained in 125-day flight on "Salyut-7" and "Mir" orbital stations.
    Egorov A; Anashkin O; Itsehovsky O; Alferova I; Golubchikova L; Lyamin V; Polyakova A; Talavrinov V; Turchaninova V; Turbasov V
    Physiologist; 1988 Feb; 31(1 Suppl):S1-3. PubMed ID: 11540957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent bed rest results and countermeasure development at NASA.
    Hargens AR
    Acta Physiol Scand Suppl; 1994; 616():103-14. PubMed ID: 8042520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The "Space Cycle" Self Powered Human Centrifuge: a proposed countermeasure for prolonged human spaceflight.
    Kreitenberg A; Baldwin KM; Bagian JP; Cotten S; Witmer J; Caiozzo VJ
    Aviat Space Environ Med; 1998 Jan; 69(1):66-72. PubMed ID: 9451537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A human-powered, small radius centrifuge for space application: a design study.
    Meeker LJ; Isdahl WM; Helduser JW
    SAFE J; 1996 Jan; 26(1):34-43. PubMed ID: 11539367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Hemodynamic shifts in humans under the conditions of prolonged microgravity and the role of hypovolemia].
    Fomina GA; Kotovskaia AR
    Aviakosm Ekolog Med; 2008; 42(2):21-5. PubMed ID: 18714722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Designing methods for musculoskeletal conditioning in weightlessness.
    Berg HE; Tesch PA
    Physiologist; 1992 Feb; 35(1 Suppl):S96-8. PubMed ID: 1589552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Physiological effects of microgravity as risk factors of diseases during space flight].
    Astakhov DA; Baranov MV; Panchenkov DN
    Patol Fiziol Eksp Ter; 2012; (2):70-6. PubMed ID: 22708413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Experiments using rats on Kosmos biosatellites: morphologic and biochemical studies].
    Il'in EA; Kaplanskiĭ AS; Savina EA
    Kosm Biol Aviakosm Med; 1989; 23(4):4-9. PubMed ID: 2685464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiovascular disturbances induced by a 25 days spaceflight and a one month head down tilt.
    Arbeille P; Fomina G; Pottier JM; Bystrov V; Patat F; Kokova N; Strogonova L; Pourcelot L; Atkov O; Guell A
    Physiologist; 1991 Feb; 34(1 Suppl):S151-2. PubMed ID: 2047419
    [No Abstract]   [Full Text] [Related]  

  • 32. Reaping rewards from space life sciences.
    Braak L
    Aerosp Am; 1997 Jan; 35(1):40-3. PubMed ID: 11539359
    [No Abstract]   [Full Text] [Related]  

  • 33. Assessment of the inflight cardiovascular adaptation & deconditioning. (14 day Antarès spaceflight).
    Arbeille Ph; Pottier JM; Fomina G; Roncin A; Kotovskaya A
    J Gravit Physiol; 1994 May; 1(1):P25-6. PubMed ID: 11538750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A gravity-independent constant force resistive exercise unit.
    Ruttley TM; Colosky PE; James SP
    Biomed Sci Instrum; 2001; 37():87-93. PubMed ID: 11347451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Taking gravity into space.
    Burton RR; Meeker LJ
    J Gravit Physiol; 1997 Jul; 4(2):P17-20. PubMed ID: 11540682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recording of blood pressure, heart rate and aortic nerve activity during parabolic flight in the rat via radio-telemetry.
    Waki H; Shimizu T; Katahira K; Nagayama T; Yamasaki M; Katsuda SI; Wago H; Okouchi T
    J Gravit Physiol; 2000 Jul; 7(2):P169-70. PubMed ID: 12697519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The progress in research on changes of central venous pressure under simulated weightlessness and microgravity].
    Wang DS; Sun L; Xiang QL; Ren W
    Space Med Med Eng (Beijing); 1999 Dec; 12(6):459-63. PubMed ID: 12434816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Efficacy of combined use of lower body negative pressure and negative pressure respiration during microgravity simulation].
    Baranov VM; Kotov AN; Mikhaĭlov VM; Tikhonov MA
    Fiziol Cheloveka; 2003; 29(5):65-8. PubMed ID: 14611086
    [No Abstract]   [Full Text] [Related]  

  • 39. [Comparative evaluation of several methods preventing orthostatic disorders during simulation of the end-of-space-mission factors].
    Baranov VM; Demin EP; Kotov AN; Kolesnikov VI; Mikhaĭlov VM; Ushakov BB; Tikhonov MA
    Aviakosm Ekolog Med; 2003; 37(4):17-23. PubMed ID: 14503183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Designing exercise gear for zero gravity.
    Whitmore H; Turpin S
    Mech Eng; 1992 Mar; 114(3):70-1. PubMed ID: 11539350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.