These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2047475)

  • 21. [Effect of weightlessness on the DNA replicative function of rat hepatocytes].
    Komolova GS; Zakaznov AV; Makeeva VF
    Kosm Biol Aviakosm Med; 1987; 21(5):31-4. PubMed ID: 3695334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flying U.S. science on the U.S.S.R. Cosmos biosatellites.
    Ballard RW; Rossberg Walker K
    ASGSB Bull; 1992 Oct; 6(1):121-8. PubMed ID: 11537653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Comparative study of the proliferation of Paramecium tetraurelia aboard a satellite and aboard a stratospheric balloon].
    Tixador R; Richoilley G; Gasset G; Planel H
    C R Seances Acad Sci III; 1982 May; 294(18):909-12. PubMed ID: 6814711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations in calcium homeostasis and bone during actual and simulated space flight.
    Wronski TJ; Morey ER
    Med Sci Sports Exerc; 1983; 15(5):410-4. PubMed ID: 6645871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Morphologic changes in the lungs of rats after a flight aboard biosatellite "Cosmos-936"].
    Iakovleva VI
    Kosm Biol Aviakosm Med; 1980; 14(4):31-5. PubMed ID: 7421097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Dynamics of lipid concentration changes in the livers of rats on biosatellites "Cosmos-605" and "Cosmos-782"].
    Iakovleva VI
    Arkh Anat Gistol Embriol; 1977 Oct; 73(10):39-44. PubMed ID: 931650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of microgravity on the structure of leaves cells involved in water transport.
    Nedukha EM
    J Gravit Physiol; 1995; 2(1):P163-4. PubMed ID: 11538913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Principal results of physiological experiments with mammals aboard biosatellite "Cosmos-936"].
    Gazenko OG; Il'in EA; Genin AM; Kotovskaia AR; Korol'kov VI
    Kosm Biol Aviakosm Med; 1980; 14(2):22-5. PubMed ID: 6967134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measuring Drosophila (fruit fly) activity during microgravity exposure.
    Miller MS; Keller TS
    J Gravit Physiol; 1999 Jul; 6(1):P99-100. PubMed ID: 11543046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of animal models for space flight physiology studies, with special focus on the immune system.
    Sonnenfeld G
    Gravit Space Biol Bull; 2005 Jun; 18(2):31-5. PubMed ID: 16038091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Hemopoietic status of rats exposed to weightlessness].
    Shvets VN; Vatsek A; Kozinets GI; Britvan II; Korol'kov VI
    Kosm Biol Aviakosm Med; 1984; 18(4):12-6. PubMed ID: 6384656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes of deoxyribonucleoprotein in the spleen, thymus and liver of rats exposed to weightlessness and artificial gravity aboard the Cosmos biosatellites.
    Misurova E; Tigranyan RA; Praslicka M
    Adv Space Res; 1981; 1(14):225-30. PubMed ID: 11541714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptation to weightlessness and its physiological mechanisms (results of animal experiments aboard biosatellites).
    Gazenko OG; Genin AM; Ilyin EA; Oganov VS; Serova LV
    Physiologist; 1980 Dec; 23(Suppl 6):S11-5. PubMed ID: 7017770
    [No Abstract]   [Full Text] [Related]  

  • 34. The fast rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results.
    Cogoli M
    ASGSB Bull; 1992 Oct; 5(2):59-67. PubMed ID: 11537642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perspective on the consequences of short- and long-duration space flight on human physiology.
    Holick MF
    Life Support Biosph Sci; 1999; 6(1):19-27. PubMed ID: 11541539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insect gravitational biology: ground-based and shuttle flight experiments using the beetle Tribolium castaneum.
    Bennett RL; Abbott MK; Denell RE
    J Exp Zool; 1994 Jul; 269(3):242-52. PubMed ID: 11536636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effects of weightlessness on osseous tissue of the rat after a space flight of 5 days (Cosmos 1514)].
    Vico L; Chappard D; Alexandre C; Palle S; Minaire P; Riffat G; Novikov VE; Bakulin AV
    J Physiol (Paris); 1987; 82(1):1-11. PubMed ID: 3430362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Adaptation to new environments: microgravity].
    Serova LV
    Usp Fiziol Nauk; 2005; 36(2):3-21. PubMed ID: 15909661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of exposure to microgravity on the development and structural organisation of plant protoplasts flown on Biokosmos 9.
    Rasmussen O; Klimchuk DA; Kordyum EL; Danevich LA; Tarnavskaya EB; Lozovaya VV; Tairbekov MG; Baggerud C; Iversen TH
    Physiol Plant; 1992 Jan; 84(1):162-70. PubMed ID: 11541143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.