These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 20476752)

  • 1. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements.
    Das S; Chakraborty S
    Langmuir; 2010 Jul; 26(13):11589-96. PubMed ID: 20476752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended Electrokinetic Characterization of Flat Solid Surfaces.
    Werner C; Körber H; Zimmermann R; Dukhin S; Jacobasch HJ
    J Colloid Interface Sci; 1998 Dec; 208(1):329-346. PubMed ID: 9820781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steric-effect induced alterations in streaming potential and energy transfer efficiency of non-newtonian fluids in narrow confinements.
    Bandopadhyay A; Chakraborty S
    Langmuir; 2011 Oct; 27(19):12243-52. PubMed ID: 21863830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle-wall interactions.
    Das S; Chakraborty S
    Langmuir; 2009 Sep; 25(17):9863-72. PubMed ID: 19618905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Streaming potential generated by a long viscous drop in a capillary.
    Sherwood JD
    Langmuir; 2008 Sep; 24(18):10011-8. PubMed ID: 18712893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip.
    Goswami P; Chakraborty S
    Langmuir; 2010 Jan; 26(1):581-90. PubMed ID: 19894749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consistent prediction of streaming potential in non-Newtonian fluids: the effect of solvent rheology and confinement on ionic conductivity.
    Bandopadhyay A; Chakraborty S
    Phys Chem Chem Phys; 2015 Mar; 17(11):7282-90. PubMed ID: 25693753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrical conductivity and surface conduction of consolidated rock cores.
    Alkafeef SF; Alajmi AF
    J Colloid Interface Sci; 2007 May; 309(2):253-61. PubMed ID: 17346731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical characterization of variously packed porous plugs of hydroxyapatite: streaming potential coupled with conductivity measurements.
    Skartsila K; Spanos N
    Langmuir; 2006 Feb; 22(4):1903-10. PubMed ID: 16460126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions.
    López-García JJ; Grosse C; Horno J
    J Colloid Interface Sci; 2009 Jan; 329(2):384-9. PubMed ID: 18947835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the Dukhin and Reynolds numbers on the apparent zeta potential of granular porous media.
    Crespy A; Bolève A; Revil A
    J Colloid Interface Sci; 2007 Jan; 305(1):188-94. PubMed ID: 17069826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena.
    Das S; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):012501. PubMed ID: 21867239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetics of concentrated suspensions of spherical colloidal particles with surface conductance, arbitrary zeta potential, and double-layer thickness in static electric fields.
    Carrique F; Arroyo FJ; Delgado AV
    J Colloid Interface Sci; 2002 Aug; 252(1):126-37. PubMed ID: 16290771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoresis in strong electric fields.
    Barany S
    Adv Colloid Interface Sci; 2009; 147-148():36-43. PubMed ID: 19041962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of surface conductivity on the apparent zeta potential of calcite.
    Li S; Leroy P; Heberling F; Devau N; Jougnot D; Chiaberge C
    J Colloid Interface Sci; 2016 Apr; 468():262-275. PubMed ID: 26852350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers.
    Das S; Guha A; Mitra SK
    Anal Chim Acta; 2013 Dec; 804():159-66. PubMed ID: 24267077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the Zeta Potential of Porous Membranes Using Electrolyte Conductivity inside Pores.
    Fievet P; Szymczyk A; Labbez C; Aoubiza B; Simon C; Foissy A; Pagetti J
    J Colloid Interface Sci; 2001 Mar; 235(2):383-390. PubMed ID: 11254318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrokinetic parameters of colloidal model systems: analysis and comparison between dilute and concentrated dispersions.
    El-Gholabzouri O; Cabrerizo-Vílchez MA; Hidalgo-Alvarez R
    J Colloid Interface Sci; 2003 May; 261(2):386-92. PubMed ID: 16256546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: the state of the art and a new approach.
    Panagiotou GD; Petsi T; Bourikas K; Garoufalis CS; Tsevis A; Spanos N; Kordulis C; Lycourghiotis A
    Adv Colloid Interface Sci; 2008 Oct; 142(1-2):20-42. PubMed ID: 18511015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electrochemical potential and ionic activity coefficients. A possible correction for Debye-Hückel and Maxwell-Boltzmann equations for dilute electrolyte equilibria.
    van der Weg PB
    J Colloid Interface Sci; 2009 Nov; 339(2):542-4. PubMed ID: 19656523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.