These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20477878)

  • 1. Increasing confidence in mass discharge estimates using geostatistical methods.
    Cai Z; Wilson RD; Cardiff MA; Kitanidis PK
    Ground Water; 2011; 49(2):197-208. PubMed ID: 20477878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing TCE source bioremediation by geostatistical analysis of a flux fence.
    Cai Z; Wilson RD; Lerner DN
    Ground Water; 2012; 50(6):908-17. PubMed ID: 22352471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating contaminant mass discharge: a field comparison of the multilevel point measurement and the integral pumping investigation approaches and their uncertainties.
    Béland-Pelletier C; Fraser M; Barker J; Ptak T
    J Contam Hydrol; 2011 Mar; 122(1-4):63-75. PubMed ID: 21146251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic evaluation of mass discharge from pointlike concentration measurements.
    Schwede RL; Cirpka OA
    J Contam Hydrol; 2010 Jan; 111(1-4):36-47. PubMed ID: 19939493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations.
    Rein A; Bauer S; Dietrich P; Beyer C
    J Contam Hydrol; 2009 Sep; 108(3-4):118-33. PubMed ID: 19682766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing attribute distributions in water sediments by geostatistical downscaling.
    Zhou Y; Michalak AM
    Environ Sci Technol; 2009 Dec; 43(24):9267-73. PubMed ID: 20000519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in contaminant mass discharge from DNAPL source mass depletion: evaluation at two field sites.
    Brooks MC; Wood AL; Annable MD; Hatfield K; Cho J; Holbert C; Rao PS; Enfield CG; Lynch K; Smith RE
    J Contam Hydrol; 2008 Nov; 102(1-2):140-53. PubMed ID: 18632182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Groundwater-surface water interaction and its role on TCE groundwater plume attenuation.
    Chapman SW; Parker BL; Cherry JA; Aravena R; Hunkeler D
    J Contam Hydrol; 2007 May; 91(3-4):203-32. PubMed ID: 17182152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contaminant mass discharge estimation in groundwater based on multi-level point measurements: a numerical evaluation of expected errors.
    Kübert M; Finkel M
    J Contam Hydrol; 2006 Mar; 84(1-2):55-80. PubMed ID: 16457905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass discharge in a tracer plume: evaluation of the Theissen Polygon Method.
    Mackay DM; Einarson MD; Kaiser PM; Nozawa-Inoue M; Goyal S; Chakraborty I; Rasa E; Scow KM
    Ground Water; 2012; 50(6):895-907. PubMed ID: 22324777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site.
    Chadalavada S; Datta B; Naidu R
    Environ Monit Assess; 2011 Feb; 173(1-4):929-40. PubMed ID: 20390346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures.
    Kalbus E; Schmidt C; Bayer-Raich M; Leschik S; Reinstorf F; Balcke GU; Schirmer M
    Environ Pollut; 2007 Aug; 148(3):808-16. PubMed ID: 17399875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contaminant plume classification system based on mass discharge.
    Newell CJ; Farhat SK; Adamson DT; Looney BB
    Ground Water; 2011; 49(6):914-9. PubMed ID: 21306359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sampling transects for affordable, high-resolution plume characterization and monitoring.
    Einarson MD; Mackay DM; Bennett PJ
    Ground Water; 2010; 48(6):805-8. PubMed ID: 21416661
    [No Abstract]   [Full Text] [Related]  

  • 16. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions.
    Wu J; Zheng C; Chien CC
    J Contam Hydrol; 2005 Mar; 77(1-2):41-65. PubMed ID: 15722172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model-based approach for making ecological inference from distance sampling data.
    Johnson DS; Laake JL; Ver Hoef JM
    Biometrics; 2010 Mar; 66(1):310-8. PubMed ID: 19459840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic analysis to assess the spatial distribution of groundwater nitrate concentrations in the Po catchment (Italy).
    Cinnirella S; Buttafuoco G; Pirrone N
    Environ Pollut; 2005 Feb; 133(3):569-80. PubMed ID: 15519731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of the uncertainty in contaminant fate and transport modeling: a case study in the Venice Lagoon.
    Sommerfreund J; Arhonditsis GB; Diamond ML; Frignani M; Capodaglio G; Gerino M; Bellucci L; Giuliani S; Mugnai C
    Ecotoxicol Environ Saf; 2010 Mar; 73(3):231-9. PubMed ID: 19493571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A field comparison of BTEX mass flow rates based on integral pumping tests and point scale measurements.
    Dietze M; Dietrich P
    J Contam Hydrol; 2011 Mar; 122(1-4):1-15. PubMed ID: 21040998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.