These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 20478076)
1. Binary image representation of a ligand binding site: its application to efficient sampling of a conformational ensemble. Sung E; Kim S; Shin W BMC Bioinformatics; 2010 May; 11():256. PubMed ID: 20478076 [TBL] [Abstract][Full Text] [Related]
2. Efficient conformational sampling of local side-chain flexibility. Källblad P; Dean PM J Mol Biol; 2003 Mar; 326(5):1651-65. PubMed ID: 12595271 [TBL] [Abstract][Full Text] [Related]
3. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets. Ashford P; Moss DS; Alex A; Yeap SK; Povia A; Nobeli I; Williams MA BMC Bioinformatics; 2012 Mar; 13():39. PubMed ID: 22417279 [TBL] [Abstract][Full Text] [Related]
4. Representation of target-bound drugs by computed conformers: implications for conformational libraries. Günther S; Senger C; Michalsky E; Goede A; Preissner R BMC Bioinformatics; 2006 Jun; 7():293. PubMed ID: 16764718 [TBL] [Abstract][Full Text] [Related]
5. Molecular modelling prediction of ligand binding site flexibility. Yang AY; Källblad P; Mancera RL J Comput Aided Mol Des; 2004 Apr; 18(4):235-50. PubMed ID: 15562988 [TBL] [Abstract][Full Text] [Related]
7. Flexible ligand docking using conformational ensembles. Lorber DM; Shoichet BK Protein Sci; 1998 Apr; 7(4):938-50. PubMed ID: 9568900 [TBL] [Abstract][Full Text] [Related]
8. Conformational analysis of macrocycles: comparing general and specialized methods. Olanders G; Alogheli H; Brandt P; Karlén A J Comput Aided Mol Des; 2020 Mar; 34(3):231-252. PubMed ID: 31965404 [TBL] [Abstract][Full Text] [Related]
9. Fragmentation-tree density representation for crystallographic modelling of bound ligands. Langer GG; Evrard GX; Carolan CG; Lamzin VS J Mol Biol; 2012 Jun; 419(3-4):211-22. PubMed ID: 22446381 [TBL] [Abstract][Full Text] [Related]
10. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction. Hoffmann B; Zaslavskiy M; Vert JP; Stoven V BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916 [TBL] [Abstract][Full Text] [Related]
11. A new method for ligand docking to flexible receptors by dual alanine scanning and refinement (SCARE). Bottegoni G; Kufareva I; Totrov M; Abagyan R J Comput Aided Mol Des; 2008 May; 22(5):311-25. PubMed ID: 18273556 [TBL] [Abstract][Full Text] [Related]
13. Form follows function: shape analysis of protein cavities for receptor-based drug design. Weisel M; Proschak E; Kriegl JM; Schneider G Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949 [TBL] [Abstract][Full Text] [Related]
14. Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy. Wu Y; Brooks CL J Chem Inf Model; 2021 Nov; 61(11):5535-5549. PubMed ID: 34704754 [TBL] [Abstract][Full Text] [Related]
15. How different are structurally flexible and rigid binding sites? Sequence and structural features discriminating proteins that do and do not undergo conformational change upon ligand binding. Gunasekaran K; Nussinov R J Mol Biol; 2007 Jan; 365(1):257-73. PubMed ID: 17059826 [TBL] [Abstract][Full Text] [Related]
16. FlexE: efficient molecular docking considering protein structure variations. Claussen H; Buning C; Rarey M; Lengauer T J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774 [TBL] [Abstract][Full Text] [Related]