BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 20478259)

  • 21. Initiating Differentiation in Immortalized Multipotent Otic Progenitor Cells.
    Azadeh J; Song Z; Laureano AS; Toro-Ramos A; Kwan K
    J Vis Exp; 2016 Jan; (107):. PubMed ID: 26780605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pluripotent stem cells from the adult mouse inner ear.
    Li H; Liu H; Heller S
    Nat Med; 2003 Oct; 9(10):1293-9. PubMed ID: 12949502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of inner ear organoids from human pluripotent stem cells.
    Nie J; Hashino E
    Methods Cell Biol; 2020; 159():303-321. PubMed ID: 32586448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pluripotent stem cell-derived cochlear cells: a challenge in constant progress.
    Czajkowski A; Mounier A; Delacroix L; Malgrange B
    Cell Mol Life Sci; 2019 Feb; 76(4):627-635. PubMed ID: 30341460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs.
    McLean WJ; McLean DT; Eatock RA; Edge AS
    Development; 2016 Dec; 143(23):4381-4393. PubMed ID: 27789624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of sensory hair cells by genetic programming with a combination of transcription factors.
    Costa A; Sanchez-Guardado L; Juniat S; Gale JE; Daudet N; Henrique D
    Development; 2015 Jun; 142(11):1948-59. PubMed ID: 26015538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and Characterization of Mammalian Otic Progenitor Cells that Can Differentiate into Both Sensory Epithelial and Neuronal Cell Lineages.
    Kojima K; Nishida AT; Tashiro K; Hirota K; Nishio T; Murata M; Kato N; Kawaguchi S; Zine A; Ito J; Van De Water TR
    Anat Rec (Hoboken); 2020 Mar; 303(3):451-460. PubMed ID: 31943808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Culture conditions have an impact on the maturation of traceable, transplantable mouse embryonic stem cell-derived otic progenitor cells.
    Abboud N; Fontbonne A; Watabe I; Tonetto A; Brezun JM; Feron F; Zine A
    J Tissue Eng Regen Med; 2017 Sep; 11(9):2629-2642. PubMed ID: 27099197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation of sphere-forming stem cells from the mouse inner ear.
    Oshima K; Senn P; Heller S
    Methods Mol Biol; 2009; 493():141-62. PubMed ID: 18839346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fate of mammalian cochlear hair cells and stereocilia after loss of the stereocilia.
    Jia S; Yang S; Guo W; He DZ
    J Neurosci; 2009 Dec; 29(48):15277-85. PubMed ID: 19955380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The cuticular plate: a riddle, wrapped in a mystery, inside a hair cell.
    Pollock LM; McDermott BM
    Birth Defects Res C Embryo Today; 2015 Jun; 105(2):126-39. PubMed ID: 26104653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst.
    Fujimoto C; Ozeki H; Uchijima Y; Suzukawa K; Mitani A; Fukuhara S; Nishiyama K; Kurihara Y; Kondo K; Aburatani H; Kaga K; Yamasoba T; Kurihara H
    J Comp Neurol; 2010 Dec; 518(23):4702-22. PubMed ID: 20963824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Restoration of auditory evoked responses by human ES-cell-derived otic progenitors.
    Chen W; Jongkamonwiwat N; Abbas L; Eshtan SJ; Johnson SL; Kuhn S; Milo M; Thurlow JK; Andrews PW; Marcotti W; Moore HD; Rivolta MN
    Nature; 2012 Oct; 490(7419):278-82. PubMed ID: 22972191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity.
    Kawamoto K; Izumikawa M; Beyer LA; Atkin GM; Raphael Y
    Hear Res; 2009 Jan; 247(1):17-26. PubMed ID: 18809482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards maturation of human otic hair cell-like cells in pluripotent stem cell-derived organoid transplants.
    Moeinvaziri F; Shojaei A; Haghparast N; Yakhkeshi S; Nemati S; Hassani SN; Baharvand H
    Cell Tissue Res; 2021 Nov; 386(2):321-333. PubMed ID: 34319434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generating Inner Ear Organoids from Mouse Embryonic Stem Cells.
    Longworth-Mills E; Koehler KR; Hashino E
    Methods Mol Biol; 2016; 1341():391-406. PubMed ID: 25822723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2.
    Herr DR; Grillet N; Schwander M; Rivera R; Müller U; Chun J
    J Neurosci; 2007 Feb; 27(6):1474-8. PubMed ID: 17287522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stepwise Induction of Inner Ear Hair Cells From Mouse Embryonic Fibroblasts via Mesenchymal- to-Epithelial Transition and Formation of Otic Epithelial Cells.
    Yang Q; Shi H; Quan Y; Chen Q; Li W; Wang L; Wang Y; Ji Z; Yin SK; Shi HB; Xu H; Gao WQ
    Front Cell Dev Biol; 2021; 9():672406. PubMed ID: 34222247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined Growth Factor and Gene Therapy: An Approach for Hair Cell Regeneration and Hearing Recovery.
    Mahmoudian-Sani MR; Jamshidi M; Asgharzade S
    ORL J Otorhinolaryngol Relat Spec; 2018; 80(5-6):326-337. PubMed ID: 30359973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Stem cell therapy in the inner ear: recent achievements and prospects].
    El-Amraoui A; Petit C
    Med Sci (Paris); 2010 Nov; 26(11):981-5. PubMed ID: 21106181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.