These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 20478266)

  • 1. Bilayer structural destabilization by low amounts of chlorophyll a.
    Vladkova R; Koynova R; Teuchner K; Tenchov B
    Biochim Biophys Acta; 2010 Aug; 1798(8):1586-92. PubMed ID: 20478266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of monolayers and bilayer foam films from lamellar, inverted hexagonal and cubic lipid phases.
    Jordanova A; Lalchev Z; Tenchov B
    Eur Biophys J; 2003 Feb; 31(8):626-32. PubMed ID: 12582822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low concentration of dioleoylphosphatidic acid induces an inverted hexagonal (H II) phase transition in dipalmitoleoylphosphatidylethanolamine membranes.
    Li SJ; Yamazaki M
    Biophys Chem; 2004 Apr; 109(1):149-55. PubMed ID: 15059667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes.
    Shah J; Duclos RI; Shipley GG
    Biophys J; 1994 May; 66(5):1469-78. PubMed ID: 8061196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational and hydrational properties during the L(beta)- to L(alpha)- and L(alpha)- to H(II)-phase transition in phosphatidylethanolamine.
    Rappolt M; Hodzic A; Sartori B; Ollivon M; Laggner P
    Chem Phys Lipids; 2008 Jul; 154(1):46-55. PubMed ID: 18339315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. La(3+) stabilizes the hexagonal II (H(II)) phase in phosphatidylethanolamine membranes.
    Tanaka T; Li SJ; Kinoshita K; Yamazaki M
    Biochim Biophys Acta; 2001 Dec; 1515(2):189-201. PubMed ID: 11718674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray diffraction study of bilayer to non-bilayer phase transitions in aqueous dispersions of di-polyenoic phosphatidylethanolamines.
    Williams WP; Brain AP; Cunningham BA; Wolfe DH
    Biochim Biophys Acta; 1997 May; 1326(1):103-14. PubMed ID: 9188805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction.
    Mannock DA; Collins MD; Kreichbaum M; Harper PE; Gruner SM; McElhaney RN
    Chem Phys Lipids; 2007 Jul; 148(1):26-50. PubMed ID: 17524381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cubic phases in phosphatidylethanolamine dispersions: Formation, stability and phase transitions.
    Tenchov B; Koynova R
    Chem Phys Lipids; 2017 Nov; 208():65-74. PubMed ID: 28982535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the position of unsaturation on the phase behavior and intrinsic curvature of phosphatidylethanolamines.
    Epand RM; Fuller N; Rand RP
    Biophys J; 1996 Oct; 71(4):1806-10. PubMed ID: 8889157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms.
    Siegel DP; Epand RM
    Biophys J; 1997 Dec; 73(6):3089-111. PubMed ID: 9414222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases.
    Harper PE; Mannock DA; Lewis RN; McElhaney RN; Gruner SM
    Biophys J; 2001 Nov; 81(5):2693-706. PubMed ID: 11606282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebrosides alter the lyotropic and thermotropic phase transitions of DOPE:DOPC and DOPE:DOPC:sterol mixtures.
    Webb MS; Irving TC; Steponkus PL
    Biochim Biophys Acta; 1997 Jun; 1326(2):225-35. PubMed ID: 9218553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermotropic and barotropic phase transitions on diacylphosphatidylethanolamine bilayer membranes.
    Matsuki H; Endo S; Sueyoshi R; Goto M; Tamai N; Kaneshina S
    Biochim Biophys Acta Biomembr; 2017 Jul; 1859(7):1222-1232. PubMed ID: 28366514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Barotropic phase transition between the lamellar liquid crystal phase and the inverted hexagonal phase of dioleoylphosphatidylethanolamine.
    Sueyoshi R; Tada K; Goto M; Tamai N; Matsuki H; Kaneshina S
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):85-8. PubMed ID: 16697154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations.
    Ortiz A; Killian JA; Verkleij AJ; Wilschut J
    Biophys J; 1999 Oct; 77(4):2003-14. PubMed ID: 10512820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-acylethanolamines as membrane topological stress compromising agents.
    Ambrosini A; Bertoli E; Mariani P; Tanfani F; Wozniak M; Zolese G
    Biochim Biophys Acta; 1993 Jun; 1148(2):351-5. PubMed ID: 8504128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and interactions of ether- and ester-linked phosphatidylethanolamines.
    Hing FS; Maulik PR; Shipley GG
    Biochemistry; 1991 Sep; 30(37):9007-15. PubMed ID: 1892815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the lamellar phase unbinding energy on the relative stability of lamellar and inverted cubic phases.
    Siegel DP; Tenchov BG
    Biophys J; 2008 May; 94(10):3987-95. PubMed ID: 18234828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.