BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 20478295)

  • 1. A transitional extracellular matrix instructs cell behavior during muscle regeneration.
    Calve S; Odelberg SJ; Simon HG
    Dev Biol; 2010 Aug; 344(1):259-71. PubMed ID: 20478295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and mechanical environment cooperatively regulate skeletal muscle regeneration.
    Calve S; Simon HG
    FASEB J; 2012 Jun; 26(6):2538-45. PubMed ID: 22415307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration.
    Mercer SE; Odelberg SJ; Simon HG
    Dev Biol; 2013 Oct; 382(2):457-69. PubMed ID: 23939298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species.
    Sandoval-Guzmán T; Wang H; Khattak S; Schuez M; Roensch K; Nacu E; Tazaki A; Joven A; Tanaka EM; Simon A
    Cell Stem Cell; 2014 Feb; 14(2):174-87. PubMed ID: 24268695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts.
    Tanaka HV; Ng NCY; Yang Yu Z; Casco-Robles MM; Maruo F; Tsonis PA; Chiba C
    Nat Commun; 2016 Mar; 7():11069. PubMed ID: 27026263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle repair and regeneration: stem cells, scaffolds, and the contributions of skeletal muscle to amphibian limb regeneration.
    Milner DJ; Cameron JA
    Curr Top Microbiol Immunol; 2013; 367():133-59. PubMed ID: 23224711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle regeneration: cellular and molecular events.
    Karalaki M; Fili S; Philippou A; Koutsilieris M
    In Vivo; 2009; 23(5):779-96. PubMed ID: 19779115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mononuclear cells from dedifferentiation of mouse myotubes display remarkable regenerative capability.
    Yang Z; Liu Q; Mannix RJ; Xu X; Li H; Ma Z; Ingber DE; Allen PD; Wang Y
    Stem Cells; 2014 Sep; 32(9):2492-501. PubMed ID: 24916688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The absence of MyoD in regenerating skeletal muscle affects the expression pattern of basement membrane, interstitial matrix and integrin molecules that is consistent with delayed myotube formation.
    Huijbregts J; White JD; Grounds MD
    Acta Histochem; 2001 Oct; 103(4):379-96. PubMed ID: 11700944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enter the matrix: shape, signal and superhighway.
    Lund DK; Cornelison DD
    FEBS J; 2013 Sep; 280(17):4089-99. PubMed ID: 23374506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population.
    Morrison JI; Lööf S; He P; Simon A
    J Cell Biol; 2006 Jan; 172(3):433-40. PubMed ID: 16449193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mannose receptor regulates myoblast motility and muscle growth.
    Jansen KM; Pavlath GK
    J Cell Biol; 2006 Jul; 174(3):403-13. PubMed ID: 16864654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix Metalloproteinase 13 from Satellite Cells is Required for Efficient Muscle Growth and Regeneration.
    Smith LR; Kok HJ; Zhang B; Chung D; Spradlin RA; Rakoczy KD; Lei H; Boesze-Battaglia K; Barton ER
    Cell Physiol Biochem; 2020 Apr; 54(3):333-353. PubMed ID: 32275813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silencing of gelatinase expression delays myoblast differentiation in vitro.
    Nowak E; Gawor M; Ciemerych MA; Zimowska M
    Cell Biol Int; 2018 Mar; 42(3):373-382. PubMed ID: 29193437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalization of hyaluronic acid hydrogels with ECM-derived peptides to control myoblast behavior.
    Silva Garcia JM; Panitch A; Calve S
    Acta Biomater; 2019 Jan; 84():169-179. PubMed ID: 30508655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional imaging studies in mice identify cellular dynamics of skeletal muscle regeneration.
    Collins BC; Shapiro JB; Scheib MM; Musci RV; Verma M; Kardon G
    Dev Cell; 2024 Jun; 59(11):1457-1474.e5. PubMed ID: 38569550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic remodeling of the extra cellular matrix during zebrafish fin regeneration.
    Govindan J; Iovine MK
    Gene Expr Patterns; 2015; 19(1-2):21-9. PubMed ID: 26101996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphibian regeneration and stem cells.
    Stocum DL
    Curr Top Microbiol Immunol; 2004; 280():1-70. PubMed ID: 14594207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration.
    Webster MT; Manor U; Lippincott-Schwartz J; Fan CM
    Cell Stem Cell; 2016 Feb; 18(2):243-52. PubMed ID: 26686466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leukaemia inhibitory factor increases myoblast replication and survival and affects extracellular matrix production: combined in vivo and in vitro studies in post-natal skeletal muscle.
    White JD; Davies M; Grounds MD
    Cell Tissue Res; 2001 Oct; 306(1):129-41. PubMed ID: 11683174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.