These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 20478913)

  • 1. Red blood cell distribution in simplified capillary networks.
    Obrist D; Weber B; Buck A; Jenny P
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1921):2897-918. PubMed ID: 20478913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of separate red blood cells on capillary tissue oxygenation calculated with a numerical model.
    Bos C; Hoofd L; Oostendorp T
    IMA J Math Appl Med Biol; 1996 Dec; 13(4):259-74. PubMed ID: 8968786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new video image analysis system to study red blood cell dynamics and oxygenation in capillary networks.
    Japee SA; Pittman RN; Ellis CG
    Microcirculation; 2005 Sep; 12(6):489-506. PubMed ID: 16147466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive recruitment of circulating leukocytes into capillary sprouts from existing capillaries in a microfluidic system.
    Forouzan O; Burns JM; Robichaux JL; Murfee WL; Shevkoplyas SS
    Lab Chip; 2011 Jun; 11(11):1924-32. PubMed ID: 21503282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of capillary dilation on the distribution of red blood cells in artificial networks.
    Schmid F; Reichold J; Weber B; Jenny P
    Am J Physiol Heart Circ Physiol; 2015 Apr; 308(7):H733-42. PubMed ID: 25617356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated method for tracking individual red blood cells within capillaries to compute velocity and oxygen saturation.
    Japee SA; Pittman RN; Ellis CG
    Microcirculation; 2005 Sep; 12(6):507-15. PubMed ID: 16147467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some factors affecting pulmonary oxygen transport.
    Whiteley JP
    Math Biosci; 2006 Jul; 202(1):115-32. PubMed ID: 16697423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow visualization tools for image analysis of capillary networks.
    Japee SA; Ellis CG; Pittman RN
    Microcirculation; 2004; 11(1):39-54. PubMed ID: 15280096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.
    McDougall SR; Anderson AR; Chaplain MA; Sherratt JA
    Bull Math Biol; 2002 Jul; 64(4):673-702. PubMed ID: 12216417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unloading oxygen in a capillary vessel under a pathological condition.
    Escobar C; Méndez F
    Math Biosci; 2008 Oct; 215(2):127-36. PubMed ID: 18694766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microvascular blood flow distribution in skeletal muscle. An intravital microscopic study in the rabbit.
    Lindbom L
    Acta Physiol Scand Suppl; 1983; 525():1-40. PubMed ID: 6588730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device.
    Shevkoplyas SS; Yoshida T; Gifford SC; Bitensky MW
    Lab Chip; 2006 Jul; 6(7):914-20. PubMed ID: 16804596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of flow for viscoelastic neutrophil models in a rectangular capillary network: effects of capillary shape and cell stiffness on transit time.
    Shirai A; Fujita R; Hayase T
    Technol Health Care; 2007; 15(2):131-46. PubMed ID: 17361057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A statistical model for red blood cell survival.
    Korell J; Coulter CV; Duffull SB
    J Theor Biol; 2011 Jan; 268(1):39-49. PubMed ID: 20950630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure-driven occlusive flow of a confined red blood cell.
    Savin T; Bandi MM; Mahadevan L
    Soft Matter; 2016 Jan; 12(2):562-73. PubMed ID: 26497051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell spacing in rat coronary capillaries during the cardiac cycle.
    Silverman DA; Rakusan K
    Microvasc Res; 1996 Sep; 52(2):143-56. PubMed ID: 8901443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depth-dependent flow and pressure characteristics in cortical microvascular networks.
    Schmid F; Tsai PS; Kleinfeld D; Jenny P; Weber B
    PLoS Comput Biol; 2017 Feb; 13(2):e1005392. PubMed ID: 28196095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.