BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20478954)

  • 1. Animal models of cardiopulmonary bypass: development, applications, and impact.
    Jungwirth B; de Lange F
    Semin Cardiothorac Vasc Anesth; 2010 Jun; 14(2):136-40. PubMed ID: 20478954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: description of a new model.
    Jungwirth B; Mackensen GB; Blobner M; Neff F; Reichart B; Kochs EF; Nollert G
    J Thorac Cardiovasc Surg; 2006 Apr; 131(4):805-12. PubMed ID: 16580438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of cardiopulmonary bypass on systemic interleukin-6 release, cerebral nuclear factor-kappa B expression, and neurocognitive outcome in rats.
    Jungwirth B; Eckel B; Blobner M; Kellermann K; Kochs EF; Mackensen GB
    Anesth Analg; 2010 Feb; 110(2):312-20. PubMed ID: 19861361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep hypothermic circulatory arrest: current status and indications.
    Jonas RA
    Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu; 2002; 5():76-88. PubMed ID: 11994867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rat model of cardiopulmonary bypass with cardioplegic arrest and hemodynamic assessment by conductance catheter technique.
    Günzinger R; Wildhirt SM; Schad H; Heimisch W; Gurdan M; Mendler N; Grammer J; Lange R; Bauernschmitt R
    Basic Res Cardiol; 2007 Nov; 102(6):508-17. PubMed ID: 17668258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of limited rewarming and postoperative hypothermia on cognitive function in a rat cardiopulmonary bypass model.
    de Lange F; Jones WL; Mackensen GB; Grocott HP
    Anesth Analg; 2008 Mar; 106(3):739-45, table of contents. PubMed ID: 18292411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypothermic extracorporeal circulation in immature swine: a comparison of continuous cardiopulmonary bypass, selective antegrade cerebral perfusion and circulatory arrest.
    Sasaki H; Guleserian KJ; Rose R; Fotiadis C; Boyer PJ; Forbess JM
    Eur J Cardiothorac Surg; 2009 Dec; 36(6):992-7. PubMed ID: 19716708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept.
    Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased transcription factor expression and permeability of the blood brain barrier associated with cardiopulmonary bypass in lambs.
    Cavaglia M; Seshadri SG; Marchand JE; Ochocki CL; Mee RB; Bokesch PM
    Ann Thorac Surg; 2004 Oct; 78(4):1418-25. PubMed ID: 15464507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral air emboli differentially alter outcome after cardiopulmonary bypass in rats compared with normal circulation.
    Jungwirth B; Kellermann K; Blobner M; Schmehl W; Kochs EF; Mackensen GB
    Anesthesiology; 2007 Nov; 107(5):768-75. PubMed ID: 18073552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiopulmonary bypass and long-term neurocognitive dysfunction in the rat.
    Dieleman JM; de Lange F; Houston RJ; Biessels GJ; Bär PR; Mackensen GB; Grocott HP; Kalkman CJ
    Life Sci; 2006 Jul; 79(6):551-8. PubMed ID: 16504211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs.
    Priestley MA; Golden JA; O'Hara IB; McCann J; Kurth CD
    J Thorac Cardiovasc Surg; 2001 Feb; 121(2):336-43. PubMed ID: 11174740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histological changes in neonatal kidneys after cardiopulmonary bypass and deep hypothermic circulatory arrest.
    Tirilomis T; Tempes T; Waldmann-Beushausen R; Ballat C; Bensch M; Schoendube FA
    Thorac Cardiovasc Surg; 2009 Feb; 57(1):7-9. PubMed ID: 19169989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypothermic low-flow cardiopulmonary bypass impairs pulmonary and right ventricular function more than circulatory arrest.
    Schultz JM; Karamlou T; Swanson J; Shen I; Ungerleider RM
    Ann Thorac Surg; 2006 Feb; 81(2):474-80; discussion 480. PubMed ID: 16427835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of craniopagus Siamese twins using cardiopulmonary bypass and hypothermic circulatory arrest.
    Cameron DE; Reitz BA; Carson BS; Long DM; Dufresne CR; Vander Kolk CA; Maxwell LG; Tilghman DM; Nichols DG; Wetzel RC
    J Thorac Cardiovasc Surg; 1989 Nov; 98(5 Pt 2):961-7. PubMed ID: 2682024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel rat model of cardiopulmonary bypass for deep hypothermic circulatory arrest without blood priming.
    Zhang W; Zhang Y; Liu D; Zhu Y; Qiao C; Wang J; Xu Y; Liu Y; Li B; Yang Y
    Chin Med J (Engl); 2014; 127(7):1317-20. PubMed ID: 24709187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional low-flow perfusion improves neurologic outcome compared with deep hypothermic circulatory arrest in neonatal piglets.
    Myung RJ; Petko M; Judkins AR; Schears G; Ittenbach RF; Waibel RJ; DeCampli WM
    J Thorac Cardiovasc Surg; 2004 Apr; 127(4):1051-6; discussion 1056-7. PubMed ID: 15052202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurocognitive function in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass: the effect of two different rewarming strategies.
    Sahu B; Chauhan S; Kiran U; Bisoi A; Lakshmy R; Selvaraj T; Nehra A
    J Cardiothorac Vasc Anesth; 2009 Feb; 23(1):14-21. PubMed ID: 18834816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overactivation of poly(adenosine phosphate-ribose) polymerase 1 and molecular events in neuronal injury after deep hypothermic circulatory arrest: study in a rabbit model.
    Pan X; Sun L; Ma W; Tang Y; Long C; Tian L; Liu N; Feng Z; Zheng J
    J Thorac Cardiovasc Surg; 2007 Nov; 134(5):1227-33. PubMed ID: 17976454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of hemoglobin vesicles during cardiopulmonary bypass priming prevents neurocognitive decline in rats.
    Yamazaki M; Aeba R; Yozu R; Kobayashi K
    Circulation; 2006 Jul; 114(1 Suppl):I220-5. PubMed ID: 16820576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.